Skip to main content
Log in

On the interfaces in a nonlocal quasilinear degenerate equation arising in population dynamics

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We study regularity and propagation properties of interfaces separating regions where nonnegative weak solutions of the Cauchy problem for the equation

$$u_t = (u^m )xx + \left[ {u\left( {\int_{ - \infty }^x {u(y,t)dy} - \int_x^\infty {u(y,t)dy} } \right)} \right]_x , m > 1,$$

are strictly positive or equal to zero. It is shown that under suitable conditions on the initial data the interfaces are (not necessarily monotone)C -curves and they do not lose this regularity at their turning points. The study of the interface regularity is performed via Lagrangian coordinates. We show that the initial behaviorof interfaces is determined by the character of growth of the initial datum near the endpoints of the initial support. Estimates (from below and from above) on the width of the positivity set of solutions are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. alvarez, J.I. Diaz and R. Kersner, On the initial growth of the interfaces in nonlinear diffusion-convection processes. Nonlinear Diffusion Equations and Their Equilibrium States I (eds. Ni, et al.), Springer, 1987, 1–20.

  2. L. Alvarez and J.I. Diaz, Sufficient and necessary initial mass conditions for the existence of a waiting time in nonlinear-convection processes. J. Math. Anal. Appl.,155 (1991), 378–392.

    Article  MATH  MathSciNet  Google Scholar 

  3. D.G. Aronson, Regularity properties of flow through porous media: a counterexample. SIAM J. Appl. Math.,19 (1970), 299–307.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.G. Aronson and J.L. Vázquez, EventualC -regularity and concavity for flows in one-dimensional porous media. Arch. Rational Mech. Anal.,99 (1987), 329–348.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.G. Berryman, Evolution of a stable profile for a class of nonlinear diffusion equations. III. Slow diffusion on the line. J. Math. Phys.,21 (1980), 1326–1331.

    Article  MATH  Google Scholar 

  6. M. Bertsch and R. Dal Passo, A numerical treatment of a superdegenerate equation with applications to the porous media equation. Quart. Appl. Math.,48 (1990), 133–152.

    MATH  MathSciNet  Google Scholar 

  7. M. Bertsch and D. Hilhorst, The interfaces between regions whereu<0 andu>0 in the porous medium equation. Applicable Anal.,41 (1991), 111–130.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Bertsch, C.J. van Duijn, J.R. Esteban and Zhang Hongfei, Regularity of the free boundary in a doubly degenerate parabolic equation. Comm. Partial Differential Equations,14 (1989), 391–412.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves. Interscience, 1948, Springer-Verlag, 1976.

  10. J.I. Diaz and R. Kersner, On the behaviour and cases of nonexistence of the free boundary in a semibounded porous medium. J. Math. Anal. Appl.,132 (1988), 281–289.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.I. Diaz and S.I. Shmarev, On the behaviour of the interface in nonlinear processes with convection dominating diffusion via Lagrangian coordinates. Adv. Math. Sci. Appl.,1 (1992), 19–45 and2 (1993), 503–506.

    MATH  MathSciNet  Google Scholar 

  12. A. Friedman, Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs, 1964.

    MATH  Google Scholar 

  13. B.H. Gilding, Hölder continuity of solutions of parabolic equations. J. London Math. Soc.,13 (1976), 103–106.

    Article  MATH  MathSciNet  Google Scholar 

  14. B.H. Gilding and L.A. Peletier, The Cauchy problem for an equation in the theory of infiltration. Arch. Rational Mech. Anal.,61 (1976), 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Guedda, D. Hilhorst and C. Picard, The one dimensional porous medium equation with convection: continuous differentiability of interfaces after the waiting times. Appl. Math. Lett.,5 (1992), 59–62.

    Article  MATH  MathSciNet  Google Scholar 

  16. M.E. Gurtin, R.C. MacCamy and E.A. Socolovsky, A coordinate transformation for the porous media equation that renders the free-boundary stationary. Quart. Appl. Math.,42 (1984), 345–357.

    MATH  MathSciNet  Google Scholar 

  17. B.F. Knerr, The porous medium equation in one dimension. Trans. Amer. Math. Soc.,38 (1977), 375–404.

    MathSciNet  Google Scholar 

  18. S.N. Kruzjkov, Nonlinear parabolic equations with two independent variables. Trudi Moskov. Mat. Obshch. (Proceedings of Moskow Mathematical Society),16 (1967), 329–346. (in Russian).

    Google Scholar 

  19. O.A. Ladyzhenskaya, V.A. Solonikov and N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs,23, Amer. Math. Soc., Provindence, 1968.

    Google Scholar 

  20. A.M. Meirmanov and V.V. Pukhnachov, Lagrangian coordinates in the Stefan problem. Dinamika Sploshn. Sredy,47 (1980), 90–111. (in Russian).

    Google Scholar 

  21. T. Nagai and M. Mimura, Some nonlinear degenerate diffusion equation related to population dynamics. J. Math. Soc. Japan,35 (1983), 539–562.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Nagai and M. Mimura, Asymptotic behaviour for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math.,43 (1983), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Nagai and M. Mimura, Asymptotic behaviour of the interfaces to a nonlinear degenerate diffusion equation in population dynamics. Japan J. Appl. Math.3 (1986), 129–161.

    Article  MATH  MathSciNet  Google Scholar 

  24. B.L. Rozjdestvensky and N.N. Yanenko, Systems of Quasilinear Equations. Nauka, Moscow, 1968. (in Russian).

    Google Scholar 

  25. S.I. Shmarev, Instantaneous appearance of singularities in solution of a degenerate parabolic equation. Sibirsk. Mat. Zj.,31 (1990), 166–179. (in Russian).

    MathSciNet  Google Scholar 

  26. S.I. Shmarev, On the properties of interfaces for a class of degenerate parabolic equations of filtration theory. Dokl. Akad. Nauk SSSR,326 (1992), 431–435. (in Russian).

    Google Scholar 

  27. E.A. Socolovsky, Lagrangian non-oscillary and FEM schemes for the porous media equation. Comput. Math. Appl.,15 (1988), 611–617.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.L. Vázquez, The interfaces of one-dimensional flows in porous media. Trans. Amer. Math. Soc.,286 (1984), 787–802.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Diaz, J.I., Nagai, T. & Shmarev, S.I. On the interfaces in a nonlocal quasilinear degenerate equation arising in population dynamics. Japan J. Indust. Appl. Math. 13, 385–415 (1996). https://doi.org/10.1007/BF03167255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167255

Key words

Navigation