Skip to main content
Log in

Pattern formation in coupled reaction-diffusion systems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A simplified coupled reaction-diffusion system is derived from a diffusive membrane coupling of two reaction-diffusion systems of activator-inhibitor type. It is shown that the dynamics of the original decoupled systems persists for weak coupling, while new coupledstationary patterns ofalternated type emerge at a critical strength of coupling and become stable for strong coupling independently of the dynamics of the decoupled systems. The approach which we use here is singular perturbation techniques and complementarily numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Fujii, M. Mimura, and Y. Nishiura, A picture of the global bifurcation diagram in ecologically interacting and diffusing systems. Physica D,5 (1982), 1–42.

    Article  MathSciNet  Google Scholar 

  2. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik,12 (1972), 30–39.

    Article  Google Scholar 

  3. P. De Kepper, V. Castets, E. Dulos, and J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D,49 (1991), 161–169.

    Article  Google Scholar 

  4. I. Lengyel and I. R. Epstein, Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science,251 (1991), 650–652.

    Article  Google Scholar 

  5. M. Mimura, M. Tabata, and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. SIAM J. Math Anal.,11 (1981), 613–631.

    Article  MathSciNet  Google Scholar 

  6. J. D. Murray, A pre-pattern formation mechanism for animal coat marking. J. Thoret. Biol.,88 (1981), 161–199.

    Article  Google Scholar 

  7. J. D. Murray, Mathematical Biology. Springer-Verlag, 1989.

  8. Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit. Dynamics Reported (New series),3, Springer Verlag, 1994.

  9. Y. Nishiura and H. Fujii, Stability of singular perturbed solutions to systems of reactiondiffusion equations. SIAM J. Math. Anal.,18 (1987), 1726–1770.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems. SIAM J. Appl. Math.,49 (1989), 481–514.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Ohta and H. Nakazawa, Self-organization in an excitable reaction-diffusion system. II. Reduction to a coupled oscillator. Phys. Rev., A,45 (1992), 5504–5511.

    Article  Google Scholar 

  12. A. M. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London, B237 (1952), 37–72.

    Article  Google Scholar 

  13. A. T. Winfree, The Geometry of Biological Time. Biomath., vol. 8, Springer-Verlag, 1980.

  14. D. Winston, M. Arora, J. Maselko, V. Gáspár, and K. Showalter, Cross-membrane coupling of chemical spatiotemporal patterns. Nature,351 (1991), 132–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Takaishi, T., Mimura, M. & Nishiura, Y. Pattern formation in coupled reaction-diffusion systems. Japan J. Indust. Appl. Math. 12, 385–424 (1995). https://doi.org/10.1007/BF03167236

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167236

Key words

Navigation