Advertisement

On a superdegenerate parabolic system

  • R. Dal Passo
  • P. de Mottoni
  • M. Schatzman
Article
  • 17 Downloads

Abstract

We investigate a system of strongly coupled, degenerate parabolic equations, focusing on local and global existence, uniqueness and asymptotic behaviour of the solutions. Special attention is payed to the support properties of the solutions. The results are interpreted in terms of effects of certain interactions between biological populations.

Key words

degenerate parabolic equations strongly coupled systems qualitative behaviour support properties of the solutions 

References

  1. [A]_L.J.S. Allen, Persistence and extinction in single species reaction-diffusion models. Bull. Math. Biol.,45 (1983), 20–227.Google Scholar
  2. [B-U]_M. Bertsch and M. Ughi, Positivity properties of viscosity solutions of a degenerate parabolic equation. Nonlinear Anal.,14 (1990), 571–592.MATHCrossRefMathSciNetGoogle Scholar
  3. [B-DP-U1]_M. Bertsch, R. Dal Passo and M. Ughi, Discontinuous viscosity solutions of a degenerate parabolic equation. Trans. Amer. Math. Soc.,320 (1990), 779–798.MATHCrossRefMathSciNetGoogle Scholar
  4. [B-DP-U2]_M. Bertsch, R. Dal Passo and M. Ughi, Nonuniqueness of solutions of a degenerate parabolic equation. Ann. Mat. Pura Appl. (in press).Google Scholar
  5. [DP-L]_R. Dal Passo and S. Luckhaus, On a degenerate diffusion problem not in divergence form. J. Differential Equations,6 (1987), 1–14.Google Scholar
  6. [F-McL]_A. Friedman and B. McLeod, Blow up of solutions of nonlinear degenerate parabolic equations. Arch. Rational Mech. Anal.,96 (1986), 55–80.MATHMathSciNetGoogle Scholar
  7. [L1]_B.C. Low, Resistive diffusion of force-free magnetic fields in a passive medium. Astrophys. J.,181 (1973), 209–223.Google Scholar
  8. [L2]_B.C. Low, Resistive diffusion of force-free magnetic fields in a passive medium II. A nonlinear analysis of the one dimensional case. Astrophys. J.,184 (1973), 917–929.CrossRefGoogle Scholar
  9. [U]_M. Ughi, A degenerate parabolic equation modelling the spread of an epidemic. Ann. Mat. Pura Appl.,143 (1986), 385–400.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 1991

Authors and Affiliations

  • R. Dal Passo
    • 1
  • P. de Mottoni
    • 2
  • M. Schatzman
    • 3
  1. 1.Istituto per le Applicazioni del Calcolo “M. Picone”C.N.R.RomaItalia
  2. 2.Dipartimento di matematicaUniversità di Roma Tor VergataItalia
  3. 3.Equipe d'Analyse NumériqueUniversité Claude Bernard-LyonFrance

Personalised recommendations