Advertisement

Applied Magnetic Resonance

, 29:439 | Cite as

Diffusion and aggregation of Alzheimer’s Aβ1–40 peptide in aqueous trifluoroethanol solutions as studied by pulsed field gradient NMR

  • A. Filippov
  • A. Sulejmanova
  • O. Antzutkin
  • G. Gröbner
Article

Abstract

Pulsed field gradient nuclear magnetic resonance technique was applied to measure the self-diffusion coefficient of Aβ1–40 peptide in trifluoroethanol (TFE) and mixed solvent TFE-water (D2O) buffer (pD 7.8) at 293 K. The data were analyzed on the basis of the Stokes model and the hardsphere approach was used to estimate self-diffusion coefficients. It was found that the extent of the Aβ1–40 aggregation in TFE solutions depends on the concentration of the peptide and the sample preparation protocol. After soft mixing, i.e., without any additional mechanical pretreatment of the peptide, the peptide is present in the monomeric form in TFE solutions. However, the additional water-bath sonication of the sample during the dissolution of Aβ1–40 in TFE enforces oligomerization of the peptide with the size of aggregates ranging from tetra- to hexamers. An increase of D2O in the mixed TFE-D2O solvent of up to 75% leads to the aggregation of the larger part of the peptide. However, the components of self-diffusion coefficients related to low-mass Aβ1–40 oligomers (dimers and trimers) were not observed in the diffusion decay curves. The most probable explanation is that dimers and trimers are not the principal intermediate species in the aggregation of Aβ1–40 peptide.

Keywords

Peptide Diffusion Coefficient Pulse Field Gradient Diffusion Decay Stokes Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K.: Proc. Natl. Acad. Sci. USA82, 4245–4249 (1985)CrossRefADSGoogle Scholar
  2. 2.
    Haass C., Selkoe D.J.: Cell75, 1039–1042 (1993)CrossRefGoogle Scholar
  3. 3.
    Iversen L.L., Mortishire-Smith R.J., Pollack S.J., Shearman M.S.: Biochem. J.311, 1–16 (1995)Google Scholar
  4. 4.
    Rochet J.-C., Lansbury Jr. P.T.: Curr. Opin. Struct. Biol.10, 60–68 (2000)CrossRefGoogle Scholar
  5. 5.
    Kosik K.S.: Proc. Natl. Acad. Sci. USA96, 2574–2576 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C.M., Stefani M.: Nature416, 507–511 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Lansbury P.T. Jr.: Proc. Natl. Acad. Sci. USA96, 3342–3344 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W., Glabe C.: Science300, 486–489 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Antzutkin O.N., Balbach J.J., Leapman R.D., Rizzo N.W., Reed J., Tycko R.: Proc. Natl. Acad. Sci USA97, 13045–13050 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Lorenzo A., Yuan M., Zhang Z., Paganetti P.A., Sturchler-Pierrat C., Staufenbiel M., Mautino J., Vigo F.S., Sommer B., Yankner B.A.: Nat. Neurosci.3, 460–464 (2000)CrossRefGoogle Scholar
  11. 11.
    Jarvet J., Damberg P., Bodell K., Eriksson L.E.G., Gräslund A.: J. Am. Chem. Soc.122, 4261–4268 (2000)CrossRefGoogle Scholar
  12. 12.
    Danielsson J., Jarvet J., Damberg P., Gräslund A.: Magn. Reson. Chem.40, S89-S97 (2002)CrossRefGoogle Scholar
  13. 13.
    Price W.S., Tsuchiya F., Arata Y.: J. Am. Chem. Soc.121, 11503–11512 (1999)CrossRefGoogle Scholar
  14. 14.
    Jones J.A., Wilkins D.K., Smith L.J., Dobson C.M.: J. Biomol. NMR10, 199–203 (1997)CrossRefGoogle Scholar
  15. 15.
    Wilkins D.K., Grimshaw S.B., Receveur V., Dobson C.M., Jones J.A., Smith L.J.: Biochemistry38, 16424–16431 (1999)CrossRefGoogle Scholar
  16. 16.
    Yao S., Howlett G.H., Norton R.S.: J. Biomol. NMR16, 109–119 (2000)CrossRefGoogle Scholar
  17. 17.
    Tseng B.P., Ester W.P., Clish C.B., Stimson E.R., Ghilardi J.R., Vinters H.V., Mantyh P.W., Lee J.P., Maggio J.E.: Biochemistry38, 1424–10431 (1999)CrossRefGoogle Scholar
  18. 18.
    Hou L., Shao H., Zhang Y., Li H., Menon N.K., Neuhaus E., Brewer J.M., Byeon I.-J.L., Ray D.G., Vitek M.P., Iwashita T., Makula R.A., Przybyla A.B., Zagorski M.: J. Am. Chem. Soc.126, 1992–2005 (2005)CrossRefGoogle Scholar
  19. 19.
    Narayanan S., Reif B.: Biochemistry44, 1444–1452 (2005)CrossRefGoogle Scholar
  20. 20.
    Krishnan V.V.: J. Magn. Reson.124, 468–473 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Stejskal E.O., Tanner J.E.: J. Chem. Phys.42, 288 (1965)CrossRefADSGoogle Scholar
  22. 22.
    Shuck P., MacPhee C.E., Howlett G.J.: Biophys. J.74, 466–474 (1998)CrossRefADSGoogle Scholar
  23. 23.
    Fushman D. Varadan R., Assfalg M., Walker O.: Prog. Nucl Magn. Reson. Spectrosc.44, 189–214 (2004)CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Filippov
    • 1
    • 2
  • A. Sulejmanova
    • 2
  • O. Antzutkin
    • 3
  • G. Gröbner
    • 1
  1. 1.Department of Biophysical ChemistryUmeå UniversityUmeåSweden
  2. 2.Kazan State UniversityKazanRussian Federation
  3. 3.Lulea University of TechnologyLuleaSweden

Personalised recommendations