Skip to main content
Log in

Optimal control and relaxation of nonlinear elliptic systems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the optimal control of systems driven by nonlinear elliptic partial differential equations. First with the aid of an appropriate convexity hypothesis we establish the existence of optimal admissible pairs. Then we drop the convexity hypothesis and we pass to the larger relaxed system. First we consider a relaxed system based on the Gamkrelidze-Warga approach, in which the controls are transition probabilities. We show that this relaxed problem has always had a solution and the value of the problem is that of the original one. We also introduce two alternative formulations of the relaxed problem (one of them control free), which we show that they are both equivalent to the first one. Then we compare those relaxed problems, with that of Buttazzo which is based on the Γ-regularization of the “extended” cost functional. Finally using a powerful multiplier rule of Ioffe-Tichomirov, we derive necessary conditions for optimality in systems with inequality state constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.U. Ahmed, Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space. SIAM J. Control Optim.,21 (1983), 953–967.

    Article  MATH  MathSciNet  Google Scholar 

  2. N.U. Ahmed, Existence of optimal relaxed controls for differential inclusions on Banach space. Nonlinear Analysis and Applications (ed. V. Lakshmikantham), Proceedings of the 7th Intern. Conf. on Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., Vol. 109, Marcel Dekker Inc., 19878, 39–49.

  3. H. Attouch, Famille d’opérateurs maximaux monotones et mésurabilité. Ann. Mat. Pura Appl.,120 (1979), 35–111.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Aumann, Integrals of set valued functions. J. Math. Anal. Appl.,12 (1965), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Balder, A general denseness result for relaxed control theory. Bull. Austr. Math. Soc.,30 (1984), 463–475.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Balder, Necessary and sufficient conditions forL 1-strong-weak lower semicontinuity of integral functionals. Nonlinear Anal.-T.M.A.,11 (1987), 1399–1404.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Berliocchi-J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France,101 (1973), 129–184.

    MATH  MathSciNet  Google Scholar 

  8. F. Browder, Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. USA,74 (1977), 2659–2661.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Buttazzo, Some relaxation problems in optimal control theory. J. Math. Anal. Appl.,125 (1987), 272–287.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific and Technical, Vol. 207, New York, 1989.

  11. G. Choquet, Lectures on Analysis, Vol. 1. Benjamin, New York, 1969.

    MATH  Google Scholar 

  12. C. Dellacherie and A. Meyer, Probabilities and Potential. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  13. N. Dunford and J. Schwartz, Linear Operators I. Wiley, New York, 1958.

    MATH  Google Scholar 

  14. I. Ekeland, Sur le contrôle optimal de systèmes gouvernés par des equations elliptiques. J. Functional Anal,9 (1972), 1–62.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Gamkrelidze, Principles of Optimal Control Theory. Plenum Press, New York, 1978.

    MATH  Google Scholar 

  16. M. Gebel, Control problem for equations of elliptic type. Cybernetics,4 (1974), 107–110.

    Article  MathSciNet  Google Scholar 

  17. F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal.,7 (1977), 149–182.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Ioffe and V. Tichomirov, Theory of Extremal Problems. Elsevier, New York, 1979.

    MATH  Google Scholar 

  19. A. and C. Ionescu Tulcea, Topics in the Theory of Lifting. Springer, Berlin, 1969.

    Google Scholar 

  20. Yu. Kuznetsov, Necessary conditions for optimality in problems of control by systems described by elliptic equations. Siberian Math. J.,20 (1979), 410–417.

    Article  Google Scholar 

  21. V. Levin, Borel sections of many valued maps. Siberian Math. J.,19 (1979), 434–438.

    Article  MATH  Google Scholar 

  22. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York, 1971.

    MATH  Google Scholar 

  23. R. Lucchetti, G. Salinetti and R. Wets, Uniform convergence of probability measures, topological criteria. Annals Statist., to appear.

  24. E. Mascolo and L. Migliaccio, Relaxation methods in control theory. Appl. Math. Optim.,20 (1989), 97–103.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Michel, Necessary conditions for optimality of elliptic systems with positivity constraints on the state. SIAM J. Control Optim.,18 (1980), 91–97.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Nenakhov and V. Gorchakov, Necessary conditions of the extremum in optimal control problems for systems described by elliptic-type partial differential equations. Cybernetics,2 (1972), 262–267.

    Google Scholar 

  27. N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions. Internat. J Math. Math. Sci.,10 (1987), 433–442.

    Article  MATH  Google Scholar 

  28. N.S. Papageorgiou, Properties of the relaxed trajectories of evolution equations and optimal control. SIAM J. Control. Optim.,27 (1989), 267–288.

    Article  MATH  MathSciNet  Google Scholar 

  29. N.S. Papageorgiou, On the optimal control and relaxation of infinite dimensional control systems. Ann. Mat. Pura Appl.,165 (1989), 259–279.

    Article  Google Scholar 

  30. N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc.,97 (1986), 507–514.

    Article  MATH  MathSciNet  Google Scholar 

  31. R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, Princeton, N.J., 1970.

    MATH  Google Scholar 

  32. M.-F. Saint Beuve, On the extension of Von Neumann-Aumann’s theorem. J. Funct. Anal.,17 (1974), 112–129.

    Article  Google Scholar 

  33. V. Tichomirov, Theory of Extremal Problems. Wiley, New York, 1986.

    Google Scholar 

  34. J. Warga, Optimal Control of Differential and Functional Equations. Acad. Press, New York, 1972.

    MATH  Google Scholar 

  35. E. Zeidler, Nonlinear Functional Analysis and Applications II. Springer, Berlin, 1990.

    Google Scholar 

  36. T. Zolezzi, Necessary conditions for optimal control of elliptic or parabolic problems. SIAM J. Control Optim.,10 (1972), 594–607.

    Article  MATH  MathSciNet  Google Scholar 

  37. L. Cesari, Optimization: Theory and Applications. Springer, New York, 1983.

    MATH  Google Scholar 

  38. J.-L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites Non-Linéaires. Dunod, Paris, 1969.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Revised version

Research supported by NSF Grant DMS-8802688

About this article

Cite this article

Papageorgiou, N.S. Optimal control and relaxation of nonlinear elliptic systems. Japan J. Indust. Appl. Math. 8, 525–550 (1991). https://doi.org/10.1007/BF03167150

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167150

Key words and phrases

Navigation