Advertisement

Toward some steps in game theory

  • Ezio Marchi
Article
  • 13 Downloads

Abstract

This paper considers an approach to dynamic finite two person games. Some results related to the minimax theorem in a dynamic way are presented.

Key words

dynamic non-cooperative games minimax theorem 

Bibliography

  1. [1]
    T. Bonnesen und U. W. Fenchel Theorie der konvexen Korper. Springer, Berlin, 1934.Google Scholar
  2. [2]
    L. Mirsky, Proof of two theorems on doubly-stochastic matrices. Proc. Amer. Math. Soc.,9 (1958), 371–374.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Marchi, On the possibility of an unusual extension of the minimax theorem. Z. Wahrsch. verw. Gebiete,12 (1969), 223–230.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Owen, Tensor composition of non-negative games. Advanced in Game Theory, Ann Math. Studies No. 52, Princeton Univ. Press, 1964.Google Scholar
  5. [5]
    L. Shapley, Solutions of compound simple games. Advanced in Game Theory, Ann. Math. Studies No. 52, Princeton Univ. Press, 1964.Google Scholar
  6. [6]
    L. Shapley, Stochastic games. Proc. Nat. Acad. Sci.,39 (1953), 1095–1100.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. Marchi, On the decomposition of general extensive games. J. London Math. Soc. (2),7 (1973), 561–567.MathSciNetGoogle Scholar
  8. [8]
    J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. 3rd ed., 1956.Google Scholar
  9. [9]
    A. Friedman, Differential Games. Wiley-Intersciences, 1971.Google Scholar
  10. [10]
    W. H. Fleming, A note on differential games of prescribes duration. Contribution to the Theory of Games, Vol. III, Ann. Math. Studies No. 39, Princeton Univ. Press, 1957, 407–416.Google Scholar
  11. [11]
    W. H. Gleming, The convergence problem for differential games. J. Math. Anal. Appl.,3 (1961), 102–116.CrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.Google Scholar
  13. [13]
    L. D. Berkovitz, A survey of differential games mathematical theory of control. Proc. Conf. Los Angeles, Calif. 1967, Academic Press, 1967, 373–385.Google Scholar
  14. [14]
    H. E. Scarf and L. S. Shapley, Games with partial information. Contribution to the Theory of Games, Vol. III, Ann. Math. Studies No. 39, Princeton Univ. Press, 1957, 213–229.Google Scholar
  15. [15]
    H. E. Scarf, A differential game with survival payoff. Contribution to the Theory of Games, Vol. III, Ann. Math. Studies No. 39, Princeton Univ. Press, 1957, 393–405.Google Scholar
  16. [16]
    R. Isaacs, Differential Games. Wiley, 1965.Google Scholar

Copyright information

© JJAM Publishing Committee 1986

Authors and Affiliations

  • Ezio Marchi
    • 1
  1. 1.Institute de Matematica AplicadaUniversidad de San LuisArgentina

Personalised recommendations