Skip to main content
Log in

Error bounds for Newton-like methods under Kantorovich type assumptions

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper provides a method for deriving newa posteriori error bounds for Newton-like methods in a Banach space under Kantorovich type assumptions. The bounds found are sharper than those of Miel [10] and include those recently obtained by Moret [12]. The applicability of our method is studied for other types of iterations including Newton’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Dennis, On the convergence of Newton-like methods. Numerical Methods for Nonlinear Algebraic Equations (ed. P. Rabinowitz), Gordon and Breach, New York, 1970, 163–181.

    Google Scholar 

  2. J. E. Dennis, Toward a unified convergence theory for Newton-like methods. Nonlinear Functional Analysis and Applications (ed. L. B. Rall), Academic Press, New York, 1971, 425–472.

    Google Scholar 

  3. P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal.,16 (1979), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. B. Gragg and R. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal.,11 (1974), 10–13.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. V. Kantorovich, On Newton’s method for functional equations. Dokl. Akad. Nauk SSSR,59 (1948), 1237–1240.

    Google Scholar 

  6. L. V. Kantorovich, On Newton’s method. Trudy Mat. Inst. Steklov,28 (1949), 104–144.

    MathSciNet  Google Scholar 

  7. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1964.

    MATH  Google Scholar 

  8. H. J. Kornstaedt, Funktionalungleichungen und Iterationsverfahren. Aequationes Math.,13 (1974), 21–45.

    Article  MathSciNet  Google Scholar 

  9. G. J. Miel, The Kantorovich theorem with optimal error bounds. Amer. Math. Monthly.,86 (1979), 212–215.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. J. Miel, Majorizing sequences and error bounds for iterative methods. Math. Comp.,34 (1980), 185–202.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. J. Miel, An updated version of the Kantorovich theorem for Newton’s method. Computing,27 (1981), 237–244.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Moret, A note on Newton type iterative methods. Computing,33 (1984) 65–73.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  14. A. M. Ostrowski, La méthode de Newton dans les espaces de Banach, C.R. Acad. Sci. Paris,27(A) (1971), 1251–1253.

    MathSciNet  Google Scholar 

  15. A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces. Academic Press, New York, 1973.

    MATH  Google Scholar 

  16. F. A. Potra, On the convergence of a class of Newton-like methods. Iterative Solution of Nonlinear Systems of Equations (eds. R. Ansorge, Th. Meis and W. Törnig), Lecture Notes in Math. 953, Springer-Verlag, Berlin-Heidelberg-New York, 1982, 125–137.

    Chapter  Google Scholar 

  17. F. A. Potra, On the aposteriori error estimates for Newton’s method. Beiträge Numer. Math.,12 (1984), 125–138.

    MathSciNet  Google Scholar 

  18. F. A. Potra and V. Pták, Sharp error bounds for Newton’s process. Numer. Math.,34 (1980), 63–72.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. B. Rall, Computational Solution of Nonlinear Operator Equations. Krieger, Huntington, N.Y., 1979.

    MATH  Google Scholar 

  20. W. C. Rheinboldt, A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal.,5 (1968), 42–63.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. W. Schmidt, Regular-falsi-Verfahren mit konsistenter Steigung und Majorantenprinzip Period. Math. Hungar.5 (1974), 187–193.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. W. Schmidt, Untere Fehlerschranken für Regular-falsi-Verfahren. Period. Math. Hungar.,9 (1978), 241–247.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Yamamoto, Error bounds for Newton’s process derived from the Kantorovich theorem. Japan J. Appl. Math.,2 (1985), 285–292.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Yamamoto, Error bounds for Newton’s iterates derived from the Kantorovich theorem. MRC Technical Summary Report, No. 2843, Univ. Wisconsin-Madison, 1985 and Numer. Math.,48 (1986), 91–98.

  25. T. Yamamoto, A unified derivation, of several error bounds for Newton’s process. J. Comp. Appl. Math.,12 & 13 (1985), 179–191.

    Article  Google Scholar 

  26. T. Yamamoto, Error bounds for Newton-like methods under Kantorovich type assumptions. MRC Technical Summary Report, No. 2846, Univ. Wisconsin-Madison, 1985.

  27. T. Yamamoto, A convergence theorem for Newton’s method in Banach spaces. MRC Technical Summary Report, No. 2879, Univ. Wisconsin-Madison, 1985 and Japan J. Appl. Math.,3 (1986), 37–52.

  28. A. I. Zincenko, A class of approximate methods for solving operator equations with nondifferentiable operators. Dopovidi Akad. Nauk. Ukrain. RSR, 1963, 852–855.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was done while the author was visiting the Mathematics Research Center, University of Wisconsin-Madison, U.S.A. from March 29, 1985 to October 21, 1985.

About this article

Cite this article

Yamamoto, T. Error bounds for Newton-like methods under Kantorovich type assumptions. Japan J. Appl. Math. 3, 295–313 (1986). https://doi.org/10.1007/BF03167104

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167104

Key words

Navigation