Hopf bifurcation and symmetry: Standing and travelling waves in a circular chain

  • Stephan A. van Gils
  • Theo Valkering


We consider a circular chain ofN particles with nearest neighbour interaction. Under a condition which is generically fulfilled all periodic solutions near a normal mode frequency are obtained and their symmetry properties are investigated. The genericity condition is explicitly evaluated for a three particle system.

Key words

Hopf bifurcation symmetry circular chain travelling waves standing waves 


  1. [1]
    A. K. Bajaj, Bifurcating periodic solutions in rotationally symmetric system. SIAM J. Appl. Math.,42 (1982), 1078–1090.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    P. Chossat and G. Iooss, Primary and secondary bifurcations in the Couette-Taylor problem. Preprint.Google Scholar
  3. [3]
    M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation problem. M.R.C. Technical Summary Report No. 1604.Google Scholar
  4. [4]
    T. Erneux and P. Mandel, Bifurcation phenomena in a laser with saturable absorber I. Z. Phys.B, 44 (1981), 353–363.CrossRefMathSciNetGoogle Scholar
  5. [5]
    S. A. van Gils, Some studies in dynamical system theory. Thesis, Tech. Univ. Delft, 1984.Google Scholar
  6. [6]
    S. A. van Gils and J. Mallet-Paret, Hopf bifurcation and symmetry: travelling and standing waves on the circle. To appear.Google Scholar
  7. [7]
    M. Golubitsky and I. Schaeffer, Imperfect bifurcation in the presence of symmetries. Comm. Math. Phys.,69 (1979), 205–232.CrossRefGoogle Scholar
  8. [8]
    M. Golubitsky and I. Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. To be published in: Proceedings of ‘Conference on Multi-parameter Bifurcation Theory”, Amer. Math. Soc., 1985.Google Scholar
  9. [9]
    M. Golubitsky and D. Schaeffer, Bifurcation withO(3) symmetry including applications to the Bénard problem. Comm. Pure Appl. Math.,35 (1982), 81–111.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Golubitsky and I. Stewart, Hopf bifurcation in the presence of symmetry. Arch. Rational Mech. Anal.,87 (1985), 107–165.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    P. Peplowski, Bifurcation of periodic solutions in a laser with saturable absorber. Physica,6D (1983), 364–374.MathSciNetGoogle Scholar
  12. [12]
    D. Rand, Dynamics and symmetry, prediction for modulated waves in rotating fluids. Arch. Rational Mech. Anal.,79 (1982), 1–38.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Renardy, Bifurcation from rotating waves. Arch. Rational Mech. Anal.,79 (1982), 49–84.MATHMathSciNetGoogle Scholar
  14. [14]
    M. Renardy and H. Haken, Bifurcation of solutions of the laser equations. Physica,8D (1983), 57–89.MathSciNetGoogle Scholar
  15. [15]
    D. H. Sattinger, Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Math. 762 (eds. I. Stakgold, D. D. Joseph, and D. H. Sattinger), Springer, 1979.Google Scholar
  16. [16]
    D. H. Sattinger, Branching in the Presence of Symmetry. SIAM, Philadelphia, 1983.Google Scholar
  17. [17]
    G. Schwarz, Smooth functions invariant under the action of a compact Lie group. Topology,14 (1975), 63–68.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. P. Valkering, Periodic travelling waves in a non-integrable one-dimensional lattice. Celestial Mech.,28 (1982), 119–131.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Vanderbauwhede, Local Bifurcation and Symmetry. Research Notes in Math. 75, Pitman, 1982.Google Scholar
  20. [20]
    A. Vanderbauwhede, Bifurcation of periodic solutions in a rotationally symmetric oscillation system. Preprint.Google Scholar

Copyright information

© JJAM Publishing Committee 1986

Authors and Affiliations

  • Stephan A. van Gils
    • 1
  • Theo Valkering
    • 2
  1. 1.Department of Mathematics and Computer ScienceFree UniversityAmsterdamThe Netherlands
  2. 2.Center for Theoretical PhysicsTwente University of TechnologyEnschedeThe Netherlands

Personalised recommendations