Advertisement

Asymptotic Behavior of the interfaces to a nonlinear degenerate diffusion equation in population dynamics

  • Toshitaka Nagai
  • Masayasu Mimura
Article

Abstract

We consider a spatially aggregating population model which is governed by a nonlinear degenerate diffusion and advection equation. The interface in this model implies the time-dependent boundary between the populated region and the unpopulated one. The asymptotic behavior of the interface is almost completely investigated.

Key words

asymptotic behavior interfaces diffusion and advection equation 

References

  1. [1]
    W. Alt, Contraction patterns in a viscous polymer system. to appear in Lecture Notes in Biomath.,55, 1984.Google Scholar
  2. [2]
    D. G. Aronson, Regularity properties of flows through porous media: The interface. Arch. Rational Mech. Anal.,37 (1970), 1–10.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    L. A. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous media. Amer. J. Math.,101 (1979), 1193–1218.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Friedman, Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N. J., 1964.MATHGoogle Scholar
  5. [5]
    A. Friedman, Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969.MATHGoogle Scholar
  6. [6]
    W. D. Hamilton, Geometry for the selfish herd. J. Theoret. Biol.,31 (1971), 295–311.CrossRefGoogle Scholar
  7. [7]
    B. F. Knerr, The porous media equation in one dimension. Trans. Amer. Math. Soc.,234 (1977), 381–415.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monogr.,23, Amer. Math. Soc., Providence, R. I. 1968.Google Scholar
  9. [9]
    H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.,29 (1982), 401–441.MATHMathSciNetGoogle Scholar
  10. [10]
    T. Nagai and M. Mimura, Some nonlinear degenerate diffusion equation related to population dynamics. J. Math. Soc. Japan.,35 (1983), 539–562.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Nagai and M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math.,43 (1983), 449–464.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. L. Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium. Trans. Amer. Math. Soc.,277 (1983), 507–527.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJAM Publishing Committee 1986

Authors and Affiliations

  • Toshitaka Nagai
    • 1
  • Masayasu Mimura
    • 2
  1. 1.Department of Mathematics, Faculty of EducationEhime UniversityEhimeJapan
  2. 2.Department of MathematicsHiroshima UniversityHiroshimaJapan

Personalised recommendations