Skip to main content
Log in

A solution method for a knapsack problem and its variant

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

Two sets of numbers are generated to determine the feasibility and periodicity for an equality-constraint knapsack problem. By aid of the two sets, it is shown that for only a finite number of right hand side numbers the knapsack problem is hard. A novel method is given for solving such hard knapsack problems, of which the complexities of a main part does not depend on the number of variables involved, provided that the constraint coefficients are bounded. A method for representing all the optimal solutions of the knapsack problem for all right hand side numbers is further shown. A similar theory is also developed for an equality-constraint integer linear program with mixed signs in the constraint coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bachem and R. Schrader, Minimal inequalities and subadditive duality. SIAM J. Control Optim.,18 (1980), 437–443.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Brauer and J. E. Shockley, On a problem of Frobenius. J. Reine Angew. Math.,211 (1962), 215–220.

    MATH  MathSciNet  Google Scholar 

  3. V. Chvátal, Hard knapsack problems. Oper. Res.,28 (1980), 1402–1411.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math.,1 (1959), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. C. Gilmore and R. E. Gomory, The theory and computation of kanpsack functions. Oper. Res.,14 (1966), 1045–1074.

    Article  MathSciNet  Google Scholar 

  6. R. E. Gomory, On the relation between integer and non-integer solution to linear programs. Proc. Nat. Acad. Sci. U.S.A.,53 (1965), 260–265.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. E. Gomory, Some polyhedra related to combinatorial problems. Linear Algebra Appl.,2 (1969), 451–558.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. A. Gorry and J. F. Shapiro, An adaptive group theoretic algorithm for integer programming problems. Management Sci.,17 (1971), 285–306.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. A. Gorry, W. D. Northup and J. F. Shapiro, Computational experience with a group theoretic integer programming algorithm. Math. Programming,4 (1973), 171–192.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Guy, Unsolved Problems in Intuitive Mathematics. Springer-Verlag, New York, 1981.

    Google Scholar 

  11. Y. Hayashi, Fundamentals of Integer Linear Programming. Ph. D. Thesis, Univ. Rochester, 1983.

  12. Y. Hayashi, Construction of theF-, P- andK-trees of a knapsack problem and their computational experiments (in Japanese). J. Oper. Res. Soc. Japan,28 (1985), 213–240.

    MATH  Google Scholar 

  13. K. E. Kendall and S. Zionts, Solving integer programming problems by aggregating constraints. Oper. Res.,25 (1977), 346–351.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. L. Lawler, Combinatorial Optimization Networks and Matroids. Holt, Rinehart and Winston, 1976.

  15. M. J. Magazine, G. L. Nemhauser and L. E. Trotter, When the greedy solution solves a class of knapsack problems. Oper. Res.,23 (1975), 207–211.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. R. Meyer, On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Programming,7 (1974), 223–235.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Third Ed. John Wiley and Sons Inc., New York, 1972.

    MATH  Google Scholar 

  18. A. Nijenhuis, A minimal-path algorithm for the “money changing problem”. Amer. Math. Monthly,86 (1979), 832–835.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. F. Shapiro, Dynamic programming algorithms for the integer programming problem-I: the integer programming problem viewed as a knapsack type problem. Oper. Res.,16 (1968), 103–121.

    Article  MATH  Google Scholar 

  20. J. F. Shapiro, Group theoretic algorithms for the integer programming problem-II: extensions to a general algorithm. Oper. Res.,16 (1968), 928–947.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hayashi, Y. A solution method for a knapsack problem and its variant. Japan J. Appl. Math. 3, 73–91 (1986). https://doi.org/10.1007/BF03167093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167093

Key words

Navigation