Skip to main content
Log in

A convergence theorem for Newton’s method in Banach spaces

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

On the basis of the results obtained in a series of papers [25]–[28], a convergence theorem for Newton’s method in Banach spaces is given, which improves the theorems of Kantorovich [4], Lancaster [8] and Ostrowski [10]. The error bounds obtained improve the recent results of Potra [17].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. E. Dennis, Jr., On the Kantorovich hypothesis for Newton’s method. SIAM J. Number. Anal.,6 (1969), 493–507.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal.,16 (1979), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. B. Gragg and R. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal.,11 (1974), 10–13.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. V. Kantorovich, On Newton’s method for functional equations. Dokl. Akad. Nauk SSSR,59 (1948), 1237–1240.

    Google Scholar 

  5. L. V. Kantorovich, The majorant principle and Newton’s method. Dokl. Acad. Nauk SSSR,76 (1951), 17–20.

    Google Scholar 

  6. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1964.

    MATH  Google Scholar 

  7. H. J. Kornstaedt, Funktionalungleichungen und Iterationsverfahren. Aequationes Math.,13 (1975), 21–45.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Lancaster, Error analysis for the Newton-Raphson method. Numer. Math.,9 (1966), 55–68.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. J. Miel, The Kantorovich theorem with optimal error bounds. Amer. Math. Monthly,86 (1979), 212–215.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. J. Miel, Majorizing sequences and error bounds for iterative methods. Math. Comp.,34 (1980), 185–202.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. J. Miel, An updated version of the Kantorovich theorem for Newton’s method. Computing,27, (1981), 237–244.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Moret, A note on Newton type iterative methods. Computing,33 (1984), 65–73.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. M. Ortega, The Newton-Kantorovich theorem. Amer. Math. Monthly,75 (1968), 658–660.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  15. A. M. Ostrowski, La méthode de Newton dans les espaces de Banach, C. R. Acad. Sci. Paris,272(A) (1971), 1251–1253.

    MathSciNet  Google Scholar 

  16. A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, 1973.

    MATH  Google Scholar 

  17. F. A. Potra, On the aposteriori error estimates for Newton’s method. Beiträge Numer. Math.,12 (1984), 125–138.

    MathSciNet  Google Scholar 

  18. F. A. Potra and V. Pták, Sharp error bounds for Newton’s process. Numer. Math.,34 (1980), 63–72.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. B. Rall, Computational Solution of Nonlinear Operator Equations. Krieger, Huntington, New York, 1979.

    MATH  Google Scholar 

  20. L. B. Rall and R. A. Tapia, The Kantorovich theorem and error estimates for Newton’s method. MRC Technical Summary Report #1043, Univ. Wisconsin, 1970.

  21. W. C. Rheinboldt, A unified convergence theory for a class of iterative process. SIAM J. Numer. Anal.,5 (1968), 42–63.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. W. Schmidt, Regular-falsi-Verfahren mit Konsistenter Steigung und Majorantenprinzip. Period. Math. Hungar.,5 (1974), 187–193.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. W. Schmidt, Untere Fehlerschranken für Regular-falsi-Verfahren. Period. Math. Hungar.,9 (1978), 241–247.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. A. Tapia, The Kantorovich theorem for Newton’s method. Amer. Math. Monthly,78 (1971), 389–392.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Yamamoto, Error bounds for Newton’s process derived from the Kantorovich theorem. Japan J. Appl. Math.,2 (1985), 285–292.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Yamamoto, Error bounds for Newton’s iterates derived from the Kantorovich theorem. MRC Technical Summary Report #2843, Univ. Wisconsin, 1985 (Numer. Math.,48 (1986), 91–98).

  27. T. Yamamoto, A unified derivation of several error bounds for Newton’s process. J. Comput. Appl. Math.,12 & 13 (1985), 179–191.

    Article  Google Scholar 

  28. T. Yamamoto, Error bounds for Newton-like methods under Kantorovich type assumptions. MRC Technical Summary Report #2846, Univ. Wisconsin, 1985.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and by the Ministry of Education in Japan.

About this article

Cite this article

Yamamoto, T. A convergence theorem for Newton’s method in Banach spaces. Japan J. Appl. Math. 3, 37–52 (1986). https://doi.org/10.1007/BF03167090

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167090

Key words

Navigation