Skip to main content
Log in

Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

Results on existence, multiplicity, stability, global continuation and limiting behaviour when ε↓0 of periodic solutions of

$$x\left( t \right) = \frac{1}{{2\varepsilon }}\int_{1 - \varepsilon }^{1 + \varepsilon } {f\left( {x\left( {t - \tau } \right)} \right)d\tau } $$

are derived for the case of a nonlinear functionf having certain monotonicity and symmetry properties. The proofs are based on the following two observations: (i) the right-hand side of (E) defines an operator which maps a cone of two-periodic functions with symmetry and positivity properties into itself; and (ii) slowly oscillating solutions of the linear variational equation correspond to dominant Floquet multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-N. Chow and J. Mallet-Paret, The Fuller index and global Hopf bifurcation. J. Differential Equations,29 (1978), 66–85.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.-N. Chow and J. Mallet-Paret, Singularly perturbed delay-differential equations. Coupled Nonlinear Oscillators (eds. J. Chandra and A. C. Scott), North-Holland Math. Studies,80, 1983, 7–12.

  3. J. M. Cushing, Nontrivial periodic solutions of some Volterra integral equations. Volterra Equations (eds. S. O. Londen and O. Staffans). Lecture Notes in Math.737, Springer, 1979, 50–66.

  4. O. Diekmann and S. A. van Gils, Invariant manifolds for Volterra integral equations of convolution type. J. Differential Equations,54 (1984), 139–180.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system. Physica,4D (1982), 366–393.

    MathSciNet  Google Scholar 

  6. L. Glass and M. Mackey, Oscillation and chaos in physiological control systems, Science,197 (1977), 287–289.

    Article  Google Scholar 

  7. J. M. Greenberg, Periodic solutions to a population equation. Dynamical Systems, (eds. L. Cesari, J. K. Hale and J. P. La Salle), Vol. II, Academic Press, New York, 1976, 153–157.

    Google Scholar 

  8. K. P. Hadeler and J. Tomiuk, Periodic solutions of difference-differential equations. Arch. Rational Mech. Anal.,65 (1977), 87–95.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. K. Hale, Theory of Functional Differential Equations. Springer, 1977.

  10. J. K. Hale, Nonlinear oscillations in equations with delays. Nonlinear Oscillations in Biology, (ed. F. C. Hoppensteadt) AMS Lectures in Applied Math.,17, 1978, 157–186

  11. U. an der Heiden and H.-O. Walther, Existence of chaos in control systems with delayed feedback. J. Differential Equations,47 (1983), 273–295.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. C. Hoppensteadt, Perturbation methods in biology. Mathematics of Biology (ed., M. Iannelli), C.I.M.E., 1979, 265–322.

  13. J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations. J. Math. Anal Appl.,48 (1974), 317–324.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential delay equation. SIAM J. Math. Anal.,6 (1975), 268–282.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. L. Kaplan and J. A. Yorke, On the nonlinear differential delay equationx′(t)=f(x(t), x(t-1)), J. Differential Equations,23 (1977), 293–314.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

    Google Scholar 

  17. J. Mallet-Paret, Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations. Systems of Nonlinear Partial Differential Equations (ed. J. M. Ball), Reidel, Dordrecht, 1983, 351–365.

    Google Scholar 

  18. J. Mallet-Paret, Morse decompositions for delay differential equations. In preparation.

  19. J. Mallet-Paret and R. D. Nussbaum Global continuation and complicated trajectories for periodic solutions of a differential-delay equation. To appear in: Proc. Symposia Pure Math., Amer. Math. Soc.

  20. J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation. In preparation.

  21. J. Mallet-Paret and J. A. Yorke, Two types of Hopf bifurcation points: sources and sinks of families of periodic orbits. Ann. N. Y. Acad. Sci.,357 (1980), 300–304.

    Article  Google Scholar 

  22. J. Mallet-Paret and J. A. Yorke, Snakes: oriented families of periodic orbits, their sources, sinks and continuation. J. Differential Equations,43 (1982), 419–450.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Martelli, K. Schmitt and H. Smith, Periodic solutions of some nonlinear delay-differential equations. J. Math. Anal. Appl.,74 (1980), 494–503.

    Article  MathSciNet  Google Scholar 

  24. A. D. Myshkis, Lineare Differentialgleichungen mit nacheilendem Argument. Deutscher Verlag Wiss., Berlin, 1955.

    MATH  Google Scholar 

  25. R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations. J. Funct. Anal.,19 (1975), 319–338.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. D. Nussbau, Periodic solutions of nonlinear autonomous functional differential equations. Functional Differential Equations and Approximation of Fixed Points (eds. H.-O. Peitgen and H.-O. Walther) Lecture Notes in Math.730, Springer, 1979, 283–325.

  27. H. Peters, Comportement chaotique d’une équation différentielle retardée, C. R. Acad. Sci. Paris, Ser. A,290 (1980), 1119–1122.

    MATH  MathSciNet  Google Scholar 

  28. H.-O. Walther, On instability, ω-limit sets and periodic solutions to nonlinear autonomous differential delay equations. Functional Differential Equations and Approximation of Fixed Points (eds. H.-O. Peitgen and H.-O. Walther) Lecture Notes in Math.730, Springer, 1979, 489–503.

  29. H.-O. Walther, Homoclinic solution and chaos in\(\dot x\left( t \right) = f\left( {x\left( {t - 1} \right)} \right)\). Nonlinear Anal. Theory Methods Appl.,5 (1981), 775–788.

    Article  MATH  MathSciNet  Google Scholar 

  30. H.-O. Walther, Bifurcation from periodic solutions in functional differential equations. Math. Z.,182 (1983), 269–289.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. D. Nussbaum, Periodic solutions of special differential equations: an example in non-linear functional analysis. Proc. Roy. Soc. Edinburgh,81A (1978), 131–151.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF Grant MCS-8201768.

About this article

Cite this article

Chow, S.N., Diekmann, O. & Mallet-Paret, J. Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation. Japan J. Appl. Math. 2, 433–469 (1985). https://doi.org/10.1007/BF03167085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167085

Key words

Navigation