Skip to main content
Log in

Structural solvability of systems of equations —A mathematical formulation for distinguishing accurate and inaccurate numbers in structural analysis of systems—

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

Structural solvability of systems of equations is discussed on the basis of the observation that two kinds of numbers—one of which is accurate and the other inaccurate but independent—are to be distinguished in the mathematical modelling of physical/engineering systems. The concept of mixed matrix is introduced along with its basic mathematical properties; in particular, the rank of a mixed matrix is expressed as the maximum size of a common independent set of two matroids associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Dulmage and N. S. Mendelsohn, Coverings of bipartite graphs. Canadian J. Math.,10 (1958), 517–534.

    MathSciNet  MATH  Google Scholar 

  2. A. L. Dulmage and N. S. Mendelsohn, A structure theory of bipartite graphs of finite exterior dimension. Trans. Roy. Soc. Canada, Section III,53 (1959), 1–13.

    Google Scholar 

  3. A. L. Dulmage and N. S. Mendelsohn, Two algorithms for bipartite graphs. SIAM J.,11 (1963), 183–194.

    MathSciNet  MATH  Google Scholar 

  4. J. Edmonds, Minimum partition of a matroid into independent subsets. J. Nat. Bur. Stand.,69B (1965), 67–72.

    MathSciNet  Google Scholar 

  5. J. E. Hopcroft and R. M. Karp, Ann 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput.,2 (1973), 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ichikawa, An Application of Matroid Theory to Systems Analysis (in Japanese), Graduation Thesis. Dept. Math. Engrg. and Instr. Phys., Univ. Tokyo, 1983.

  7. Information-Technology Promotion Agency, and Institute of the Union of Japanese Scientists and Engineers, DPS (V2) User’s Manual (in Japanese), 1980.

  8. Institute of the Union of Japanese Scientists and Engineers, JUSE-L-GIFS User’s Manual. Ver. 3 (in Japanese), 1976.

  9. M. Iri, The maximum-rank minimum-term rank theorem for the pivotal transforms of matrix. Linear Algebra Appl.,2 (1969), 427–446.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Iri, A review of recent work in Japan on principal partitions of matroids and their applications. Ann. New York Acad. Sci.,319 (1979), 306–319.

    Article  MathSciNet  Google Scholar 

  11. M. Iri, Applications of matroid theory. Mathematical Programming—The State of the Art (eds. A. Bachem, M. Groetschel and B. Korte), Springer, Berlin, 1983, 158–201.

    Google Scholar 

  12. M. Iri, Structural theory for the combinatorial systems characterized by submodular functions. Progress in Combinatorial Optimization (ed. W. R. Pulleyblank), Academic Press, Canada, 1984, 197–219.

    Google Scholar 

  13. M. Iri and S. Fujishige, Use of matroid theory in operations research, circuits and systems theory. Intern. J. Systems Sci.,12 (1981), 27–54.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Iri and N. Tomizawa, A unifying approach to fundamental problems in network theory by means of matroids. Electr. Comm. Japan, 58-A (1975), 28–35.

    MathSciNet  Google Scholar 

  15. M. Iri, J. Tsunekawa and K. Murota, Graph-theoretic approach to large-scale systems—Structural solvability and block-triangularization (in Japanese). Trans. Inform. Process. Soc. Japan,23 (1982), 88–95. (English translation available.)

    Google Scholar 

  16. M. Iri, J. Tsunekawa and K. Yajima, The graphical techniques used for a chemical process simulator “JUSE GIFS”, Information Processing 71 (Proc. IFIP Congr. 71), Vol. 2, (Appl.) 1972, 1150–1155.

    Google Scholar 

  17. C.-T. Lin, Structural controllability. IEEE Trans. Automatic Control,,AC-19 (1974), 201–208.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Lovász and Y. Yemini, On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods,3 (1982), 91–98.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. G. Luenberger, Dynamic equations in descriptor form. IEEE Trans. Automatic Control,AC-22 (1977), 312–321.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Murota, Structural analysis of large-scale system of equations by means of the M-decomposition of a graph (in Japanese). Trans. Inform. Process. Soc. Japan23 (1982), 480–486.

    Google Scholar 

  21. K. Murota, Menger-decomposition of a graph and its application to the structural analysis of a large-scale system of equations. Kokyuroku, Res. Inst. Math. Sci., Kyoto Univ.,453, 1982, 127–173.

    Google Scholar 

  22. K. Murota, LU-decomposition of a matrix with entries of different kinds. Linear Algebra Appl.,49 (1983), 275–283.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Murota, Structural Solvability and Controllability of Systems. Doctor’s dissertation, Univ. Tokyo, 1983.

  24. K. Murota, Structural controllability of a system with some fixed coefficients (in Japanese). Trans. Soc. Instr. and Control Engineers,19 (1983), 683–690.

    Google Scholar 

  25. K. Murota and M. Iri, Matroid-theoretic approach to the structural solvability of a system of equations (in Japanese). Trans. Inform. Process. Soc. Japan,24 (1983), 157–164.

    Google Scholar 

  26. M. Nakamura and M. Iri, A structural theory for submodular functions, polymatroids and polymatroid intersections. Research Memorandum RMI 81-06, Dept. Math. Engrg. and Instr. Phys., Univ. Tokyo, 1981.

  27. O. Ore, Graphs and matching theorems. Duke Math. J.,22 (1955), 625–639.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Recski, Sufficient conditions for the unique solvability of linear memoryless 2-ports. Circuit Theory and Appl.,8 (1980), 95–103.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Recski and M. Iri, Network theory and transversal matroids. Discrete Appl. Math.,2 (1980), 311–326.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Schrijver, Matroids and Linking Systems. Math. Centre Tracts 88, Amsterdam, 1978.

  31. D. J. G. Sebastian, R. G. Noble, R. K. M. Thambynayagam and R. K. Wood, DPS—A unique tool for process simulation. 2nd World Congr. Chemical Engrg., Montreal, 1981.

  32. R. W. Shields and J. B. Pearson, Structural controllability of multiinput linear systems. IEEE Trans. Automatic Control,AC-21 (1976), 203–212.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Spivak, Calculus on Manifolds. Benjamin, New York, 1965.

    MATH  Google Scholar 

  34. K. Sugihara, Detection of structural inconsistency in systems of equations with degree of freedom and its applications. Discrete Appl. Math.,10 (1985), 297–312.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Sugihara, Mathematical structures of line drawings of polyhedrons—Towards man-machine communication by means of line drawings. IEEE Trans. Pattern Anal. Mach. Intel., PAMI4 (1982), 458–469.

    Article  Google Scholar 

  36. N. Tomizawa and M. Iri, An algorithm for determining the rank of a triple matrix product AXB with application to the problem of discerning the unique solution in a network. Electr. Comm. Japan57-A, (1974), 50–57.

    MathSciNet  Google Scholar 

  37. R. K. M. Thambynayagam, R. K. Wood and P. Winter DPS—An engineer’s tool for dynamic process analysis. The Chemical Engineer,365 (1981), 58–65.

    Google Scholar 

  38. B. L. van der Waerden, Algebra. Springer, Berlin, 1955.

    Google Scholar 

  39. D. J. A. Welsh, Matroid Theory. Academic Press, London, 1976.

    MATH  Google Scholar 

  40. K. Yajima, J. Tsunekawa and S. Kobayashi, On equation-based dynamic simulation. Proc. World Congr. Chemical Engrg., Montreal, V, 1981, 469–472.

    Google Scholar 

  41. K. Murota, Combinatorial canonical form of layered mixed matrices and block-triangularization of large-scale systems of linear/nonlinear equations. DPS 257, Inst. Socio-Econom. Plan., Univ. Tsukuba, 1985.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this paper is published in a Japanese journal [25].

About this article

Cite this article

Murota, K., Iri, M. Structural solvability of systems of equations —A mathematical formulation for distinguishing accurate and inaccurate numbers in structural analysis of systems—. Japan J. Appl. Math. 2, 247–271 (1985). https://doi.org/10.1007/BF03167048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167048

Key words

Navigation