Skip to main content
Log in

Observability, controllability, and feedback stabilizability for evolution equations, I

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider an evolution equationdu/dt+Au=0 in a Banach spaceX, and suppose that the system is unstable in the sense that the operator norm ∥e tAXX grows exponentially ast→∞. Then, by choosing appropriate operatorsS andT, we want to construct a new system called a feedback system of the formdu/dt+Au=TSu such that we have ∥e −t(ATS)XXMe (t ≧ 0) for some positive constantsM and ω. HereS:X→C N stands for the function of sensors whileT:C N→X corresponds to the effect of controllers. Our main concern is to constructT (respectively,S) for a givenS (respectively,T) so that the resulting feedback system is stable in the sense above. Actually, we shall derive certain necessary and sufficient conditions onS (respectively, onT) which enable us to choose such aT (respectively,S). These conditions are essentially equivalent to the observability ofS and to the controllability ofT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dolecki and D. L. Russell, A general theory of observation and control. SIAM J. Control Optim.,15 (1977), 185–220.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. O. Fattorini, On complete controllability of linear systems. J. Differential Equations,3 (1967) 391–402.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. L. Hautus, Controllability and observability conditions of linear autonomous systems. Indag. Math.,31 (1969), 443–448.

    MathSciNet  Google Scholar 

  4. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups. Revised ed., Amer. Math. Soc. Colloq. Publ. Vol. 31, AMS, Providence, 1957.

    Google Scholar 

  5. T. Kato, Perturbation Theory for Linear Operators. Second ed., Springer, Berlin-Heidelberg-New York, 1976.

    Google Scholar 

  6. H. Komatsu, Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan,16, (1964) 230–262.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. T. Kuroda, An Introduction to Scattering Theory. Lecture Notes Series No. 51, Aarhus Univ., 1978.

  8. Chao-Chin Kwan and Kang-Ning Wang, Sur la stabilisation de la vibration élastique. Sci. Sinica,17 (1974), 446–467.

    MathSciNet  Google Scholar 

  9. T. Nambu, Feedback stabilization for distributed parameter systems of parabolic type. J. Differential Equations,33 (1979), 167–188.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Nambu, Feedback stabilization for distributed parameter systems of parabolic type, II. Arch. Rational Mech. Anal.,79 (1982), 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. S. Phillips, The adjoint semi-group. Pacific J. Math.,5 (1955), 269–283.

    MATH  MathSciNet  Google Scholar 

  12. Y. Sakawa, Controllability for partial differential equations of parabolic type. SIAM J. Control,12 (1974), 389–400.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Sakawa, Observability and related problems for partial differential equations of parabolic type. Ibid.,,13 (1975), 14–27.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Sakawa and T. Matsushita, Feedback stabilization of a class of distributed systems and construction of a state estimator. IEEE Trans. Automat. Control, AC 20, 1975, 748–753.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J. Control,12 (1974), 500–508.

    Article  MathSciNet  Google Scholar 

  16. Shunhua Sun, Boundary stabilization of hyperbolic systems with no dissipative conditions. SIAM J. Control Optim.,20 (1982), 862–883.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Suzuki, Observation of evolution systems. Master’s thesis (in Japanese), Univ. Tokyo, Tokyo, 1978.

    Google Scholar 

  18. T. Suzuki, Certain moving sensors and observability for parabolic equations. Numer. Funct. Anal. Optim., 2 (4) (1980), 287–300

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Triggiani, On the stabilizability problem in Banach space. J. Math. Anal. Appl.,52 (1975), 383–403, Addendum. Ibid., J. Math. Anal. Appl.,56 (1976) 492

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Triggiani, Extensions of rank conditions for controllability and observability to Banach spaces and unbounded operators. SIAM J. Control Optim.,14 (1976) 313–338.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Triggiani, On Nambu’s boundary stabilizability problem for diffusion processes. J. Differential Equations,33 (1979), 189–200.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Triggiani, Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim.,6 (1980), 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. M. Wonham, Linear Multivariable Control: A Geometric Approach. Second ed., Springer, New York-Heidelberg-Berlin, 1979.

    MATH  Google Scholar 

  24. M. Yamamoto, On feedback systems for parabolic equations: Well-posedness and stabilizability. Master’s thesis (in Japanese), Univ. Tokyo, Tokyo, 1983.

    Google Scholar 

  25. K. Yosida, Functional Analysis, Springer, Berlin-Göttingen-Heidelberg, 1964.

    Google Scholar 

Added references

  1. C. D. Benchimol, A note on weak stabilizability of contractive semigroups. SIAM J. Control Optim.,16 (1978), 373–379.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Inaba, T. Maruyama and H. Hinata, The weak stabilizability of linear systems in Hilbert space. Kôkyûroku, RIMS, Kyoto Univ., 504, 1983, 26–37.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Suzuki, T., Yamamoto, M. Observability, controllability, and feedback stabilizability for evolution equations, I. Japan J. Appl. Math. 2, 211–228 (1985). https://doi.org/10.1007/BF03167045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167045

Key words

Navigation