Skip to main content
Log in

Standing pulse-like solutions of a spatially aggregating population model

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

The present paper is devoted to the study of stationary solutions of a nonlinear degenerate diffusion equation involving a nonlocal convection term, which represents a mathematical model for spatially aggregating phenomena of populations. The equation has two ecological parameters:m>1 for the diffusion process and 0≦r≦∞ for the aggregating process expressed by the convection term. For the special case ofm=2, this paper gives all stationary solutions of the one-parameter family {P(2,r)} of the equations. The result asserts thatP(2,r) has no non-trivial stationary solution when\(0 \leqq r \leqq \sqrt 2 \), whileP(2,r) has many pulse-like stationary solutions when\(r > \sqrt 2 \). The paper also states a partial result for the general case ofm, and offers a view of the global structure of stationary solutions ofP(m, r).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Alt, Degenerate diffusion equations with drift functionals modelling aggregation (preprint).

  2. W. Alt, Models for mutual attraction and aggregation of motile individuals (preprint).

  3. D. G. Aronson, Regularity properties of flows through porous media. SIAM J. Appl. Math.,17 (1969), 461–467.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. G. Aronson, Regularity properties of flows through porous media: A counterexample. SIAM J. Appl. Math.,19 (1970), 299–307.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. G. Aronson, Regularity properties of flows through porous media: The interface. Arch. Rational Mech. Anal.,37 (1970), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. G. Aronson, Density dependent interaction-diffusion systems. Dynamics and Modelling of Reactive Systems (eds. W. E. Stewart, W. H. Ray and C. C. Conley), Academic Press, New York, 1980

    Google Scholar 

  7. G. I. Barenblatt, On some unsteady motions of a liquid and a gas in porous medium. Prikl. Mat. Mech.,16 (1952), 67–78.

    MATH  MathSciNet  Google Scholar 

  8. J. Bear, Dynamics of Fluids in Porous Media. American Elsevier, New York, 1972.

    Google Scholar 

  9. L. A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium. Trans. Amer. Math. Soc.,252 (1979), 99–113.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. A. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium. Amer. J. Math.,101 (1979), 1193–1218.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  12. E. DiBenedetto and D. Hoff, An interface tracking algorithm for the porous medium equation (to appear in Trans. Amer. Math. Soc.).

  13. B. H. Gilding, Properties of solutions of an equation in the theory of infiltration. Arch. Rational Mech. Anal.,65 (1977), 203–225.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. H. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration. Arch. Rational Mech. Anal.,61 (1976), 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations. SIAM J. Appl. Math.,20 (1971), 199–223.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous populations. J. Theoret. Biol.,52 (1975), 441–457.

    Article  Google Scholar 

  17. M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations. Math. Biosci.,33 (1979), 35–49.

    Article  MathSciNet  Google Scholar 

  18. J. K. Hale, Functional Differential Equations. Springer-Verlag, New York, 1971.

    MATH  Google Scholar 

  19. W. D. Hamilton, Geometry for the selfish herd. J. Theoret. Biol.,31 (1971), 295–311.

    Article  Google Scholar 

  20. D. Hoff, A linearly implicit finite difference scheme for the one-dimensional porous medium equation (preprint).

  21. T. Ikeda, Discrete asymptotic behavior for a nonlinear degenerate diffusion equation. Computing Methods in Applied Sciences and Engineering VI (eds. R. Glowinsky and J.-L. Lions), North-Holland, Amsterdam, 1984.

    Google Scholar 

  22. A. S. Kalashnikov, On the occurrence of singularities in the solutions of the equation of nonstationary filtration. Ž. Vyčisl. Mat. i Mat. Fiz,7 (1967), 440–444.

    Google Scholar 

  23. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966.

    MATH  Google Scholar 

  24. E. F. Keller and L. A. Segel, Model for chemotaxis. J. Theoret. Biol.,30 (1971), 225–234.

    Article  Google Scholar 

  25. B. F. Knerr, The porous medium equation in one dimension. Trans. Amer. Math. Soc.,234 (1977), 381–415.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Kuramoto, Rhythms and turbulence in populations of chemical oscillator Physica A,106 (1981), 128–143.

    Article  MathSciNet  Google Scholar 

  27. C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. SIAM J. Appl. Math.,42 (1982), 502–531.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Mimura, T. Nakaki and K. Tomoeda, A numerical approach to interface curves for some nonlinear diffusion equations. Japan J. Appl. Math.,1 (1984), 93–139.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology. Adv. Biophys.,15 (1982), 19–65.

    Article  Google Scholar 

  30. T. Munakata, Liquid instability and freezing—Reductive perturbation approach—. J. Phys. Soc. Japan,43 (1977), 1723–1728.

    Article  MathSciNet  Google Scholar 

  31. T. Nagai, Some nonlinear degenerate diffusion equations with a nonlocally convective term in ecology. Hiroshima Math. J.,13 (1983), 165–202.

    MATH  MathSciNet  Google Scholar 

  32. T. Nagai and M. Mimura, Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Japan,35 (1983), 539–562.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Nagai and M. Mimura Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math.,43 (1983), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Nagai and M. Mimura, Asymptotic behavior of the interface to a nonlinear degenerate diffusion equation in population dynamics (preprint).

  35. W. I. Newman, Some exact solutions to a non-linear diffusion problem in population genetics and combustion. J. Theoret. Biol.,85 (1980), 325–334.

    Article  MathSciNet  Google Scholar 

  36. A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Biomathematics 10, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  37. O. A. Oleinik, A. S. kalashnikov and Chzou Yui-lin, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration. Izv. Akad. Nauk. SSSR,22 (1958), 667–704.

    Google Scholar 

  38. R. E. Pattle, Diffusion from an instantaneous point source with concentration-dependent coefficient. Quart. J. Mech. Appl. Math.,12 (1959), 407–409.

    Article  MATH  MathSciNet  Google Scholar 

  39. F. Riesz and B. Sz. Nagy, Functional Analysis. Frederic Ungar Publishing, New York, 1955.

    Google Scholar 

  40. A. E. Scheidegger, The physics of flow through porous media. Univ. Tronto Press, Illinois, 1974.

    Google Scholar 

  41. L. Schwartz. Théorie des distributions. Hermann, Paris, 1966.

  42. R. P. Sperb, On a mathematical model describing aggregation of amoebae. Bull. Math. Biol.,41 (1979), 555–571.

    MATH  MathSciNet  Google Scholar 

  43. K. Tomoeda and M. Mimura, Numerical approximations to interface curves for a porous media equation. Hiroshima Math. J.,13 (1983), 273–294.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ikeda, T. Standing pulse-like solutions of a spatially aggregating population model. Japan J. Appl. Math. 2, 111–149 (1985). https://doi.org/10.1007/BF03167041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167041

Key words

Navigation