FMR study of superparamagnetic Ni particles with weak and strong magnetic anisotropy



The method of ferromagnetic resonance (FMR) was used to study the process of thermal decomposition of the layered double hydroxides of lithium-aluminum and nickel-aluminum with intercalated EDTA complexes of nickel. The magnetic resonance spectra of nickel superparamagnetic nanoparticles were recorded at two temperatures (300 and 77 K). A computer simulation of FMR spectra was based on a modified statistic model which assumes the resonance of single-domain particles randomly oriented in an amorphous matrix. It is suggested that the line of the magnetic resonance of superparamagnetic particles narrows due to effects similar to those of dynamic narrowing in electron spin resonance and nuclear magnetic resonance spectra. In the framework of the model used, a fairly good agreement was achieved between calculated and experimental data. The formation of the two types of particles with strong (about 2·106 erg/cm3) and weak (about 2·105 erg/cm3) effective magnetic anisotropy was established.


Magnetic Anisotropy Layered Double Hydroxide Nickel Particle Superparamagnetic Particle Electron Spin Reso 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson J.R.: Structure of Metallic Catalysts. London: Academic Press 1975.Google Scholar
  2. 2.
    Dormann J.L., Fiorani D., Tronc E.: Adv. Chem. Mater.98, 283–494 (1997)Google Scholar
  3. 3.
    Gazeau F., Bacri J.C., Gendron F., Perzynski R., Raikher Yu.L., Stepanov V.I., Dubois E.: J. Magn. Magn. Mater.186, 175–187 (1998)CrossRefADSGoogle Scholar
  4. 4.
    Gazeau F., Shilov V., Bacri J.C., Dubois E., Gendron F., Perzynski R., Raikher Yu.L., Stepanov V.I.: J. Magn. Magn. Mater.202, 535–546 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Lacava L.M., Lacava B.M., Azevedo R.B., Lacava Z.G.M., Buske N., Tronconi A.L., Morais P.C.: J. Magn. Magn. Mater.225, 79–83 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Marin C.N., Malaescu I., Ercuta A.: J. Phys. D Appl. Phys.34, 1466–1469 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Isobe T., Park S.Y., Weeks R.A., Zuhr R.A.: J. Noncryst. Solids189, 173–180 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Berger R., Kliava J., Bissey J.-C., Baïetto V.: J. Phys. Condens. Matter10, 8559–8572 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Berger R., Bissey J.-C., Kliava J.: J. Phys. Condens. Matter12, 9347–9360 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Berger R., Kliava J., Bissey J.-C., Baïetto V.: J. Appl. Phys.87, 7389–7396 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Berger R., Bissey J.-C., Kliava J., Daubric H., Estournés C.: J. Magn. Magn. Mater.234, 535–544 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Koksharov Yu.A., Gubin S.P., Kosobudsky I.D., Beltran M., Khodorkovsky Y., Tishin A.M.: J. Appl. Phys.88, 1587–1592 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Koksharov Yu.A., Pankratov D.A., Gubin S.P., Kosobudsky I.D., Beltran M., Khodorkovsky Y., Tishin A.M.: J. Appl. Phys.89, 2293–2298 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Diehl M.R., Yu J.-Y., Heath J.R., Held G.A., Doyle H., Sun S., Murray C.B.: J. Phys. Chem. B105, 7913–7919 (2001)CrossRefGoogle Scholar
  15. 15.
    Sharma V.K., Baiker A.: J. Chem. Phys.75, 5596–5601 (1981)CrossRefADSGoogle Scholar
  16. 16.
    Simoens A.J., Derouane E.G., Baker R.T.K.: J. Catal.75, 175–184 (1982)CrossRefGoogle Scholar
  17. 17.
    Bonneviot L., Che M., Olivier D., Martin G.A., Freund E.: J. Phys. Chem.90, 2112–2117 (1986)CrossRefGoogle Scholar
  18. 18.
    Hadjiivanov K., Mihaylov M., Klissurski D., Stefanov P., Abadjieva N., Vassileva E., Mintchevz L.: J. Catal.185, 314–323 (1999)CrossRefGoogle Scholar
  19. 19.
    Hill T., Mozaffari-Afshar M., Schmidt J., Risse T., Stempel S., Heemeier M., Freund H.-J.: Chem. Phys. Lett.292, 524–530 (1998)CrossRefADSGoogle Scholar
  20. 20.
    Hill T., Stempel S., Risse T., Baumer M., Freund H.-J.: J. Magn. Magn. Mater.198–199, 354–356 (1999)CrossRefGoogle Scholar
  21. 21.
    Hill T., Mozaffari-Afshar M., Schmidt J., Risse T., Freund H.-J.: Surf. Sci.429, 246–254 (1999)CrossRefADSGoogle Scholar
  22. 22.
    Tarasov K.A., Isupov V.P., Bokhonov B.B., Gaponov Y.A., Tolochko B.P., Sharafutdinov M.R., Shatskaya S.S.: J. Mater. Synth. Process.8, 21–27 (2000)CrossRefGoogle Scholar
  23. 23.
    Tarasov K.A., Isupov V.P., Yulikov M.M., Yermakov A.E., O’Hare D.: Solid State Phenomena90–91, 527–532 (2003)CrossRefGoogle Scholar
  24. 24.
    Starikova E.V., Isupov V.P., Tarasov K.A., Chupakhina L.E., Yulikov M.M.: J. Struct. Chem. (in press); Starikova E.V., Isupov V.P., Tarasov K.A., Chupakhina L.E., Yulikov M.M. in: Proceedings of X APAM Topical Seminar and III Conference “Materials of Siberia” “Nanoscience and Technology” devoted to 10th Anniversary of APAM, June 2–6, 2003, Novosibirsk, Russia, pp. 145–146.Google Scholar
  25. 25.
    de Biasi R.S., Devezas T.C.: J. Appl. Phys.49, 2466–2469 (1978)CrossRefADSGoogle Scholar
  26. 26.
    Dubowik J., Baszynski J.: J. Magn. Magn. Mater.59, 161–168 (1986)CrossRefADSGoogle Scholar
  27. 27.
    Martsenyouk M.A., Raikher Yu.L. Shliomis M.I.: Zh. Eksp. Teor. Fiz.65, 834–841 (1973) [Sov. Phys. JETP38, 413 (1973)]Google Scholar
  28. 28.
    Raikher Yu.L., Shliomis M.I.: Zh. Eksp. Teor. Fiz.74, 1060–1073 (1974) [Sov. Phys. JETP40, 526 (1974)]Google Scholar
  29. 29.
    Gekht R.S.: Fiz. Metall. Metalloved.55, 225–229 (1983)Google Scholar
  30. 30.
    Raikher Yu.L., Stepanov V.I.: Zh. Eksp. Teor. Fiz.102, 1409–1423 (1992) [Sov. Phys. JETP75, 764 (1992)]Google Scholar
  31. 31.
    Raikher Yu.L., Stepanov V.I.: J. Magn. Magn. Mater.149, 34–37 (1995); Raikher Yu.L., Stepanov V.I.: Phys. Rev. B51, 16428–16431 (1995)CrossRefADSGoogle Scholar
  32. 32.
    Brown W.F. Jr.: Phys. Rev.130, 1677–1686 (1963)CrossRefADSGoogle Scholar
  33. 33.
    Vonsovskii S.V.: Ferromagnetic Resonance. Oxford: Pergamon 1966.Google Scholar
  34. 34.
    Gurevich A.G.: Magnitnyi Rezonans v Ferritakh i Antiferromagnetikah. Moscow: Nauka 1973.Google Scholar
  35. 35.
    Krinchik G.S.: Fizika Magnitnyh Javlenii. Moscow: Moscow University Press 1976.Google Scholar
  36. 36.
    Molin Yu.N., Salikhov K.M., Zamaraev K.I.: Spin Exchange. Berlin: Springer 1980.Google Scholar
  37. 37.
    Anderson P.W., Weiss P.R.: Rev. Mod. Phys.25, 269–276 (1953)CrossRefADSGoogle Scholar
  38. 38.
    McConnell H.M.: J. Chem. Phys.28, 430–431 (1958)CrossRefADSGoogle Scholar
  39. 39.
    Aleksandrov I.V.: Teoriya Magnitnoi Relaksatsii. Moscow: Nauka 1975.Google Scholar
  40. 40.
    Kubo R.: J. Phys. Soc. Jpn.12, 570–586 (1957)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Shtrikman S., Wohlfarth E.P.: Phys. Lett. A85, 467–470 (1981)CrossRefADSGoogle Scholar
  42. 42.
    Dormann J.L., Bessais L., Fiorani D.: J. Phys. C Solid State Phys.21, 2015–2034 (1988)CrossRefADSGoogle Scholar
  43. 43.
    Fredkin D.R., Koehler T.R., Smith J.F., Schultz S.: J. Appl. Phys.69, 5276–5278 (1991)CrossRefADSGoogle Scholar
  44. 44.
    Schabes M.E., Bertram H.N.: J. Appl. Phys.64, 1347–1349 (1988)CrossRefADSGoogle Scholar
  45. 45.
    Nakatani Y., Hayashi N., Uesaka Y.: Jpn. J. Appl. Phys.30, 2503–2512 (1991)CrossRefADSGoogle Scholar
  46. 46.
    Dimitrov D.A., Wysin G.M.: Phys. Rev. B50, 3077–3084 (1994)CrossRefADSGoogle Scholar
  47. 47.
    Gray D.E. (ed.), American Institute of Physics Handbook. New York: McGraw Hill 1963.Google Scholar
  48. 48.
    Neel L.: J. Phys. Radium.15, 225 (1954)MATHCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Institute of Chemical Kinetics and CombustionRussian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations