Skip to main content
Log in

Peculiarities of the radiospectroscopy line shape in nanomaterials

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The theory of the radiospectroscopy (nuclear magnetic resonance [NMR] and electron spin resonance [ESR]) line shape for nanomaterials is developed. The consideration was performed in the core and shell models which are, respectively, the nanoparticle regions unperturbed and perturbed by the surface influence. The shift of the resonance frequency by the surface tension was taken into account. The homogeneously broadened line shape was supposed to be Gaussian or Lorentzian. Inhomogeneous broadening of lines via the distribution of nanoparticle sizes was calculated for several forms of the size distribution function. The splitting of radiospectroscopy spectra into two lines decreases with particle sizes, which looks like that in the bulk and on the surface. It was shown to be the characteristic feature of nanomaterial spectra. The changing of these lines’ intensity and width with the change of the distribution function parameters and the particle size decrease was considered. The comparison of the theory with NMR spectra of17O and25Mg observed recently in nanocrystalline MgO is performed. The calculations fit pretty good the observed size dependence of the line shape, intensity and width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishikawa K., Nomura T., Okada N., Tokada K.: Jpn. J. Appl. Phys. Part 135, 5196 (1996)

    Article  Google Scholar 

  2. Rychetsky J., Hudak O.: J. Phys. Condens. Matter9, 4955 (1997)

    Article  ADS  Google Scholar 

  3. Jiang B., Bursill L.A.: Phys. Rev. B60, 9978 (1999)

    Article  ADS  Google Scholar 

  4. McNeal M.P., Jang S.-J., Newnham R.E.: J. Appl. Phys.83, 3288 (1998)

    Article  ADS  Google Scholar 

  5. Zhong W.L., Wang Y.G., Zhang P.L., Qu B.D.: Phys. Rev. B50, 698 (1994)

    Article  ADS  Google Scholar 

  6. Li X., Shih W.-H.: J. Am. Ceram. Soc.80, 2844 (1997)

    Article  Google Scholar 

  7. Niepce J.C.: Electroceramics4, 29 (1994)

    Google Scholar 

  8. Bottcher R., Klimm C., Semmelhack H.C., Volkel G., Glaser H.J., Hartmann E.: Phys. Status Solidi215, R3 (1999)

    Article  Google Scholar 

  9. Ragulya A.V.: Nanostruct. Mater.10, 349 (1998)

    Article  Google Scholar 

  10. Stoneham V.M.: Rev. Mod. Phys.41, 82 (1969)

    Article  ADS  Google Scholar 

  11. Glinchuk M.D., Grachev V.G., Roitzin S.B., Syslin L.A.: Elektricheskie Effekti v Radiospektroskopii. Moscow: Nauka 1981

    Google Scholar 

  12. Ma W., Zhang M., Lu Z.: Phys. Status Solidi A166, 811 (1998)

    Article  ADS  Google Scholar 

  13. Landau L., Lifshits E.: Statistical Physics, Part I. Oxford: Pergamon 1982.

    Google Scholar 

  14. Perriat P., Niepce J.C., Gaboche G.: J. Therm. Anal.41, 635 (1994)

    Article  Google Scholar 

  15. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon 1961.

    Google Scholar 

  16. Glinchuk M.D., Laguta V.V., Bykov I.P., Nokhrin S., Bovtun V.P., Leshenko M.A., Rosa J., Jastrabik L.: J. Appl. Phys.81, 3561 (1997)

    Article  ADS  Google Scholar 

  17. Sveshnikov A.E., Tikhonov A.N.: Teoriya Funkcii Complexsnoy Peremennoy. Moscow: Nauka 1970

    Google Scholar 

  18. Chadwick A.V., Poplett I.J.F., Maitland D.T.S., Smith M.E.: Chem. Mater.10, 864 (1998)

    Article  Google Scholar 

  19. Glinchuk M.D., Deigen M.F.: Surf. Sci.3, 243 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Glinchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinchuk, M.D., Morozovskaya, A.N., Slipenyuk, A.M. et al. Peculiarities of the radiospectroscopy line shape in nanomaterials. Appl. Magn. Reson. 24, 333–342 (2003). https://doi.org/10.1007/BF03166934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166934

Keywords

Navigation