Advertisement

Applied Magnetic Resonance

, 24:333 | Cite as

Peculiarities of the radiospectroscopy line shape in nanomaterials

  • M. D. Glinchuk
  • A. N. Morozovskaya
  • A. M. Slipenyuk
  • I. P. Bykov
Article

Abstract

The theory of the radiospectroscopy (nuclear magnetic resonance [NMR] and electron spin resonance [ESR]) line shape for nanomaterials is developed. The consideration was performed in the core and shell models which are, respectively, the nanoparticle regions unperturbed and perturbed by the surface influence. The shift of the resonance frequency by the surface tension was taken into account. The homogeneously broadened line shape was supposed to be Gaussian or Lorentzian. Inhomogeneous broadening of lines via the distribution of nanoparticle sizes was calculated for several forms of the size distribution function. The splitting of radiospectroscopy spectra into two lines decreases with particle sizes, which looks like that in the bulk and on the surface. It was shown to be the characteristic feature of nanomaterial spectra. The changing of these lines’ intensity and width with the change of the distribution function parameters and the particle size decrease was considered. The comparison of the theory with NMR spectra of17O and25Mg observed recently in nanocrystalline MgO is performed. The calculations fit pretty good the observed size dependence of the line shape, intensity and width.

Keywords

Surface Tension Electron Spin Resonance Resonance Frequency Line Shape Size Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ishikawa K., Nomura T., Okada N., Tokada K.: Jpn. J. Appl. Phys. Part 135, 5196 (1996)CrossRefGoogle Scholar
  2. 2.
    Rychetsky J., Hudak O.: J. Phys. Condens. Matter9, 4955 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Jiang B., Bursill L.A.: Phys. Rev. B60, 9978 (1999)CrossRefADSGoogle Scholar
  4. 4.
    McNeal M.P., Jang S.-J., Newnham R.E.: J. Appl. Phys.83, 3288 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Zhong W.L., Wang Y.G., Zhang P.L., Qu B.D.: Phys. Rev. B50, 698 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Li X., Shih W.-H.: J. Am. Ceram. Soc.80, 2844 (1997)CrossRefGoogle Scholar
  7. 7.
    Niepce J.C.: Electroceramics4, 29 (1994)Google Scholar
  8. 8.
    Bottcher R., Klimm C., Semmelhack H.C., Volkel G., Glaser H.J., Hartmann E.: Phys. Status Solidi215, R3 (1999)CrossRefGoogle Scholar
  9. 9.
    Ragulya A.V.: Nanostruct. Mater.10, 349 (1998)CrossRefGoogle Scholar
  10. 10.
    Stoneham V.M.: Rev. Mod. Phys.41, 82 (1969)CrossRefADSGoogle Scholar
  11. 11.
    Glinchuk M.D., Grachev V.G., Roitzin S.B., Syslin L.A.: Elektricheskie Effekti v Radiospektroskopii. Moscow: Nauka 1981Google Scholar
  12. 12.
    Ma W., Zhang M., Lu Z.: Phys. Status Solidi A166, 811 (1998)CrossRefADSGoogle Scholar
  13. 13.
    Landau L., Lifshits E.: Statistical Physics, Part I. Oxford: Pergamon 1982.Google Scholar
  14. 14.
    Perriat P., Niepce J.C., Gaboche G.: J. Therm. Anal.41, 635 (1994)CrossRefGoogle Scholar
  15. 15.
    Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon 1961.Google Scholar
  16. 16.
    Glinchuk M.D., Laguta V.V., Bykov I.P., Nokhrin S., Bovtun V.P., Leshenko M.A., Rosa J., Jastrabik L.: J. Appl. Phys.81, 3561 (1997)CrossRefADSGoogle Scholar
  17. 17.
    Sveshnikov A.E., Tikhonov A.N.: Teoriya Funkcii Complexsnoy Peremennoy. Moscow: Nauka 1970Google Scholar
  18. 18.
    Chadwick A.V., Poplett I.J.F., Maitland D.T.S., Smith M.E.: Chem. Mater.10, 864 (1998)CrossRefGoogle Scholar
  19. 19.
    Glinchuk M.D., Deigen M.F.: Surf. Sci.3, 243 (1965)CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • M. D. Glinchuk
    • 1
  • A. N. Morozovskaya
    • 1
  • A. M. Slipenyuk
    • 1
  • I. P. Bykov
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev-142Ukraine

Personalised recommendations