Applied Magnetic Resonance

, 26:387 | Cite as

Anisotropy of rotation of nitroxide probes in nematogenic liquid crystals

  • J. S. Hwang
  • G. A. Oweimreen


An electron paramagnetic resonance (EPR) line shape simulation for nitroxide spin probes in the motional narrowing region was carried out assuming axially symmetricg andA tensors and with different anisotropies of rotationN (=R /R ) whereR andR are, respectively, elements of the diffusion tensor along and perpendicular to its principal axisz′. In addition, it was assumed that the principal axes of the diffusion tensor coincide with the molecular axes. Each of three casesz′=x,z′=y andz′=z, which result from cyclic permutations of the molecular axesx, y andz with thez′,y′ andx′ axes of the diffusion tensor, yields its typical EPR spectrum characterized by the relative intensities of the low-, center- and high-field lines. The parameter δ defined by and calculable from the intensities of the three lines was found to vary linearly withN for thez′=x andz′=y cases and, as anticipated, to be practically constant at a value of 1 for thez′=z case. This suggested a method for estimatingN for a probe from its EPR spectrum. Experimental spectra over a narrow temperature range (1°C) in the vicinity of the nematic-to-isotropic transition (about 34.6°C) ofN-(4-n-butylbenzilidene)-4-amino-2,2,6,6-tetramethylpiperidine-1-oxide at a mole fraction of 1·10−3 in 4-n-pentyl-4′-cyanobiphenyl showed a pattern of peak heights characteristic of thez′=x case with δ values that gave, neglecting effects of the mean field, higher and lowerN values in the nematic and isotropic regions, respectively. Analysis of other similar systems in the literature gave similar results.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Diffusion Tensor Nitroxide Jojoba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ferruti P., Gill D., Harpold M.A., Klein M.P.: J. Chem. Phys.50, 4545–4550 (1969)CrossRefADSGoogle Scholar
  2. 2.
    Morsy M.A., Oweimreen G.A., Hwang J.S.: J. Phys. Chem.100, 8331–8337 (1996)CrossRefGoogle Scholar
  3. 3.
    Pudzianowski A.T., Stillman A.E., Schwartz R.N., Bales B.L., Lesin E.S.: Mol. Cryst. Liq. Cryst.34, 33–41 (1976)CrossRefGoogle Scholar
  4. 4.
    Hwang J.S., Pollet P., Saleem M.: J. Chem. Phys.84, 577–583 (1986)CrossRefADSGoogle Scholar
  5. 5.
    Goldman S.A., Bruno G.V., Freed J.H.: J. Phys. Chem.76, 1858–1860 (1972)CrossRefGoogle Scholar
  6. 6.
    Smith P.M.: Eur. Polym. J.15, 147–152 (1974)CrossRefGoogle Scholar
  7. 7.
    Hamada K., Iijima T., McGregor R.: Macromolecules19, 1443–1448 (1986)CrossRefADSGoogle Scholar
  8. 8.
    Freed J.H., Bruno G.V., Polnaszek C.F.: J. Phys. Chem.75, 3385–3399 (1971)CrossRefGoogle Scholar
  9. 9.
    Freed J.H. in: Spin Labeling: Theory and Applications (Berliner L.J., ed.), chapt. 3. New York: Academic Press 1976.Google Scholar
  10. 10.
    Oweimreen G.A., Martire D.E.: J. Chem. Phys.72, 2500–2510 (1980)CrossRefADSGoogle Scholar
  11. 11.
    Oweimreen G.A., Hwang J.S.: Chem. Phys. Lett.334, 83–88 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Hwang J.S., Morsy M.A., Oweimreen G.A.: J. Phys. Chem.98, 9056–9062 (1994)CrossRefGoogle Scholar
  13. 13.
    Li A.S.W., Hwang J.S.: J. Phys. Chem.89, 2556–2260 (1985)CrossRefGoogle Scholar
  14. 14.
    Hwang J.S., Mason R., Hwang L.P., Freed J.H.: J. Phys. Chem.79, 489–511 (1979)CrossRefGoogle Scholar
  15. 15.
    Luckhurst G.R. in: Liquid Crystals and Plastic Crystals (Gray G.W., Winsor P.A., eds.), vol. 2, chapt. 7. New York: Wiley 1974.Google Scholar
  16. 16.
    Kelker H., Hatz R.: Handbook of Liquid Crystals, chapt. 2, p. 48, Weinheim: Verlag Chemie 1980.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations