Applied Magnetic Resonance

, 26:317 | Cite as

Structure of molecules in crystalline lattice obtained by a modified method of molecular mechanics: Calculations of13C chemical shifts

  • A. R. Julmetov
  • R. M. Aminova
  • A. V. Aganov


A program for the calculation of the geometric structure of molecular crystals on the basis of the methods of molecular mechanics (MM) has been developed. A standard MM method has been modified by including force fields taking into account the specific (H-bond and van der Waals) interactions and the periodicity of the crystal lattice of an arbitrary form and symmetry. The geometric parameters of the molecule in a crystal calculated by this method are in agreement with the experimental X-ray data within reasonable accuracy. The nuclear magnetic resonance13C chemical shifts have been calculated for the molecular geometry obtained by the quantum chemical UB3LYP/6-31G(d, p) method. The results of the calculations have been used to explain some unusual NMR spectral data.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Density Functional Theory Method Crystalline Lattice Molecular Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maciel G.E. (ed.): Nuclear Magnetic Resonance in Modern Technology. NATO ASI Series, series C, vol. 447. Dordrecht: Kluwer 1994.Google Scholar
  2. 2.
    Gerstein B.C., Dubowski C.R.: Transient Techniques in NMR of Solids. Orlando, Fla.: Academic Press 1985.Google Scholar
  3. 3.
    Klochkov V.V., Latyipov Sh.E., Rahmatullin A.I., Vafina R.M., Klimovitskii E.N., Aganov A.V.: Zh. Obshch. Khim.68, 140–146 (1998)Google Scholar
  4. 4.
    Frisch M.J., Trucks G.W., Schlesel H.B., Gill P.M.W., Johnson B.D., Robb M.A., Cheeseman J.R., Keith T., Peterson G.A., Montgomery J.A., Raghavachari K., Al-Laham V.A., Zakrzewski V.G., Ortiz J.V., Foresman J.B., Cioslowski J., Stefanov B.B., Nanayakkara A., Challacombe M., Peng C.Y., Ayaba P.Y., Chen W., Wong M.W., Andres J.L., Replogle E.S., Comperts R., Martin R.L., Fox D.J., Binkley J.S., Defrees D.J., Baker J., Baker J., Stewart J.P., Head Gordon M., Gonzalez C., Pople J.A.: Gaussian 94, Revision D. Pittsburgh, Pa.: Gaussian Inc. 1995.Google Scholar
  5. 5.
    Ditchfield R.: Mol. Phys.34, 789–807 (1974)CrossRefADSGoogle Scholar
  6. 6.
    Burkert U., Allinger N.L.: Molecular Mechanics. ACS Monograph Series, vol. 177. Washington, D.C.: American Chemical Society 1982.Google Scholar
  7. 7.
    Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta J.S., Weiner P.: J. Am. Chem. Soc.106, 765–784 (1984)CrossRefGoogle Scholar
  8. 8.
    Weiner S.J., Kollman P.A., Nguyen D.T., Case D.A.: J. Comput. Chem.7, 230–252 (1986)CrossRefGoogle Scholar
  9. 9.
    Rasmussen K.: Potential Functions in Conformational Analysis. Berlin: Springer 1985.Google Scholar
  10. 10.
    Allinger N.L.: J. Comput. Chem.12, 186–199 (1991)CrossRefGoogle Scholar
  11. 11.
    Gavezotti A., Filippini G. in: Theoretical Aspects and Computer Modeling of the Molecular Solid State (Gavezotti A., ed.), p. 61. Chichester: Wiley 1997.Google Scholar
  12. 12.
    Baur W.H., Kassner D.: Acta Crystallogr. B48, 356–369 (1992)CrossRefGoogle Scholar
  13. 13.
    Hohenbergand P., Kohn W.: Phys. Rev. B136, 864–871 (1964)CrossRefADSGoogle Scholar
  14. 14.
    Kohn W., Sham L.J.: Phys. Rev. A140, 1133–1138 (1965)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Becke A.D.: J. Chem. Phys.98, 5648–5652 (1993)CrossRefADSGoogle Scholar
  16. 16.
    Lee C., Yang W., Parr R.G.: Phys. Rev. B37, 785–789 (1988)CrossRefADSGoogle Scholar
  17. 17.
    Bovey F.A.: High Resolution NMR of Macromolecules, p. 455. New York: Academic Press 1972.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • A. R. Julmetov
    • 1
  • R. M. Aminova
    • 1
  • A. V. Aganov
    • 1
  1. 1.Physics DepartmentKazan State UniversityKazan

Personalised recommendations