Applied Magnetic Resonance

, 28:431 | Cite as

Chemical exchange in KHSeO4 and NH4HSeO4 studied by two-dimensional NMR

  • Yu. N. Ivanov
  • A. A. Sukhovsky
  • I. P. Aleksandrova
  • D. Michel


The microscopic mechanism of proton transport in partially deuterated potassium hydrogen selenate (KHSe) and in partially deuterated ammonium hydrogen selenate (AHSe) were studied by means of one-dimensional Fourier transform2H nuclear magnetic resonance (NMR), two-dimensional2H NMR and dielectric measurements over a wide temperature range. In both systems, KHSe and AHSe, the slow chemical exchange processes of deuterons between different hydrogen bridges occur. It was established that the rates of exchange between deuteron sites, which are involved in infinite chains of hydrogen bonds, are approximately the same for both crystals. The rates of exchange between these positions and the deuterons in the dimer groups of KHSe are approximately hundred times more slowly. On the basis of our findings, we discuss the models of the microscopic mechanism of hydrogen transport for both substances.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Chemical Exchange Nuclear Magnetic Resonance Data Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blinc R., Dolinsek J., Lahajnar G., Zupancic I., Shuvalov L.A., Baranov A.I.: Phys. Status Solidi B83, 123 (1984)CrossRefGoogle Scholar
  2. 2.
    Baranov A.I., Fedosyuk R.M., Schagina N.M., Shuvalov L.A.: Ferroelectrics Lett.2, 25 (1984)CrossRefGoogle Scholar
  3. 3.
    Hutton S.L., Fehst I., Böhmer R., Braume M., Mertz B., Lunkenheimer P., Loidl A.: Phys. Rev. Lett.66, 1990–1993 (1991)CrossRefADSGoogle Scholar
  4. 4.
    Ries H., Böhmer R., Fehst I., Loidl A.: Z. Phys. B99, 401 (1996)CrossRefADSGoogle Scholar
  5. 5.
    Inanov Yu.N., Totz J., Michel D., Klotzsche G., Sukhovsky A.A., Aleksandrova I.P.: J. Phys. Condens. Matter11, 3151 (1999)Google Scholar
  6. 6.
    Ivanov Yu.N., Sukhovsky A.A., Aleksandrova I.P., Totz J., Michel D.: Fiz. Tverd. Tela (St. Petersburg)44, 1032 (2002)Google Scholar
  7. 7.
    Totz J., Michel D., Ivanov Yu.N., Aleksandrova I.P., Petersson J., Klöpperpieper A.: Appl. Magn. Reson.17, 243 (1999)CrossRefGoogle Scholar
  8. 8.
    Aleksandrova I.P., Rozanov O.V., Sukhovskii A.A., Moskvich Yu.N.: Phys. Lett. A95, 339 (1983)CrossRefADSGoogle Scholar
  9. 9.
    Aleksandrova I.P., Colomban Ph., Denoyer F., Le Calve N., Novak A., Pasquier B., Rozicki A.: Phys. Status Solidi A114, 531 (1989)CrossRefGoogle Scholar
  10. 10.
    Aleksandrov K.S., Kruglik A.I., Misyul S.V., Simonov M.A.: Kristallografiya25, 1142 (1980)Google Scholar
  11. 11.
    Baran J., Lis T.: Acta Crystallogr. C42, 270 (1980)CrossRefGoogle Scholar
  12. 12.
    Abragam A.: Principles of Nuclear Magnetism. Oxford: Oxford University Press 1961.Google Scholar
  13. 13.
    Schmidt C., Blümich B., Spiess H.W.: J. Magn. Reson.79, 269 (1988)Google Scholar
  14. 14.
    Kaufmann S., Wefing S., Schaefer D., Spiess H.W.: J. Chem. Phys.93, 197 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yu. N. Ivanov
    • 1
  • A. A. Sukhovsky
    • 1
  • I. P. Aleksandrova
    • 1
  • D. Michel
    • 2
  1. 1.L.V. Kirensky Institute of PhysicsRussian Academy of SciencesKrasnoyarskRussian Federation
  2. 2.Fakultät für Physik und GeowissenschaftenUniversität LeipzigLeipzigGermany

Personalised recommendations