Advertisement

Applied Magnetic Resonance

, 27:471 | Cite as

Dynamics of the biopolymers in articular cartilage studied by magic angle spinning NMR

  • D. Huster
  • L. Naji
  • J. Schiller
  • K. Arnold
Article

Abstract

To understand the viscoelastic properties of cartilage tissue and for the development of tissue-engineered cartilage, we have studied the physicochemical properties of bovine nasal and pig articular cartilage by13C nuclear magnetic resonance (NMR) methods. The major macromolecular components of cartilage can be investigated individually by applying13C high-resolution (HR) NMR with scalar decoupling (for the polysaccharide component) and solid-state NMR with dipolar decoupling (for the collagen component). Partially resolved NMR spectra of the cartilage polysaccharides can be obtained by HR13C NMR indicating that these polysaccharides are highly mobile. Resonance lines have been assigned to chondroitin sulfate, the most mobile component of cartilage. To characterize time scales of molecular motions, we have measuredT 1 andT 2 relaxation times as a function of temperature and analyzed these data by means of a broad distribution of molecular correlation times. Typical correlation times for the large amplitude motions of chondroitin sulfate are of the order of 0.1–10 ns. For the detection and dynamical characterization of the cartilage collagen cross-polarization magic angle spinning (CP MAS) and high-power decoupling are indispensable.13C CP MAS spectra of cartilage are dominated by resonances from rigid collagen, while only low-intensity signals from the polysaccharides are observed. The good sensitivity at a magnetic field strength of 17.6 T allows the site-specific investigation of cartilage collagen dynamics by two-dimensional NMR methods. The cartilage collagen is essentially rigid with low-amplitude segmental motions on the fast time scale. Considering the high water content of cartilage and the almost isotropic mobility of the chondroitin sulfate molecules it is remarkable how little this affects the collagen dynamics. The dynamics of cartilage macromolecules is broadly distributed from almost completely rigid to highly mobile, which lends cartilage its mechanical strength and shock-absorbing properties.

Keywords

Nuclear Magnetic Resonance Chondroitin Sulfate Cartilage Tissue Dipolar Coupling Magic Angle Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meachim G., Stockwell R.A. in: Adult Articular Cartilage (Freeman M.A.R., ed.), pp. 69–144. London: Pitman Medical 1977.Google Scholar
  2. 2.
    Flugge L.A., Miller-Deist L.A., Petillo P.A.: Chem. Biol.6, 57 (1999)Google Scholar
  3. 3.
    Maroudas A. in: Methods in Cartilage Research (Maroudas A., Kuetter K., eds.), p. 211. London: Academic Press 1990.Google Scholar
  4. 4.
    Eyre D.: Arthritis Res.4, 30 (2002)CrossRefGoogle Scholar
  5. 5.
    Scott J.E.: Pathol. Biol. (Paris)49, 284 (2001)Google Scholar
  6. 6.
    Creighton T.E.: Proteins: Structures and Molecular Properties. New York: Freeman 1993.Google Scholar
  7. 7.
    Scott J.E.: J. Biochem. Mol. Biol. Biophys.2, 155 (1999)Google Scholar
  8. 8.
    Chakrabarti B., Park J.W.: CRC Crit Rev. Biochem.,8, 225 (1980)CrossRefGoogle Scholar
  9. 9.
    Poole A.R.: Biochem. J.236, 1 (1986)Google Scholar
  10. 10.
    Comper W.D., Laurent T.C.: Physiol Rev.58, 255 (1978)Google Scholar
  11. 11.
    Cohen N.P., Foster R.J., Mow V.C.: J. Orthop. Sports Phys. Ther.28, 203 (1998)Google Scholar
  12. 12.
    Tomlins A.M., Foxall P.J.D., Lindon J.C., Lynch M.J., Spraul M., Everett J.R., Nicholson J.K.: Anal. Commun.35, 113 (1998)CrossRefGoogle Scholar
  13. 13.
    Stejskal E.O., Schaefer J.: J. Am. Chem. Soc.98, 1031 (1976)CrossRefGoogle Scholar
  14. 14.
    Torchia D.A., Hasson M.A., Hascall V.C.: J. Biol. Chem.252, 3617 (1977)Google Scholar
  15. 15.
    Brewer C.F., Keiser H.: Proc. Natl. Acad. Sci. USA.72, 3421 (1975)CrossRefADSGoogle Scholar
  16. 16.
    Naji L., Kaufmann J., Huster D., Schiller J., Arnold K.: Carbohydr. Res.327, 439 (2000)CrossRefGoogle Scholar
  17. 17.
    Schiller J., Naji L., Huster D., Kaufmann J., Arnold K.: MAGMA13, 19 (2001)CrossRefGoogle Scholar
  18. 18.
    Huster D., Schiller J., Arnold K.: Magn. Res. Med.48, 624 (2002)CrossRefGoogle Scholar
  19. 19.
    Vold R.L., Waugh J.S., Klein M.P., Phelps D.E.: J. Chem. Phys.48, 3831 (1968)CrossRefADSGoogle Scholar
  20. 20.
    Meiboom S., Gill D.: Rev. Sci. Instrum.29, 688 (1958)CrossRefADSGoogle Scholar
  21. 21.
    Carr H.Y., Purcell E.M.: Phys. Rev.94, 630 (1954)CrossRefADSGoogle Scholar
  22. 22.
    Bennett A.E., Rienstra C.M., Auger M., Lakshmi K.V., Griffin R.G.: J. Chem. Phys.103, 6951 (1995)CrossRefADSGoogle Scholar
  23. 23.
    Munowitz M.G., Griffin R.G., Bodenhausen G., Huang T.H.: J. Am. Chem. Soc.103, 2529 (1981)CrossRefGoogle Scholar
  24. 24.
    Schaefer J., Stejskal E.O., McKay R.A., Dixon W.T.: J. Magn. Reson.52, 123 (1983)Google Scholar
  25. 25.
    Hong M., Gross J.D., Griffin R.G.: J. Phys. Chem.101, 5869 (1997)Google Scholar
  26. 26.
    Bielecki A., Kolbert A.C., Levitt M.H.: Chem. Phys. Lett.155, 341 (1989)CrossRefADSGoogle Scholar
  27. 27.
    Huster D., Xiao L., Hong M.: Biochemistry40, 7662 (2001)CrossRefGoogle Scholar
  28. 28.
    Maricq M.M., Waugh J.S.: J. Chem. Phys.70, 3300 (1979)CrossRefADSGoogle Scholar
  29. 29.
    Webb G.G., Zilm K.W.: J. Am. Chem. Soc.111, 2455 (1989)CrossRefGoogle Scholar
  30. 30.
    Palmer A.G. III, Williams J., McDermott A.: J. Phys. Chem.100, 13293 (1996)CrossRefGoogle Scholar
  31. 31.
    Hong M.: J. Am. Chem. Soc.122, 3762 (2000)CrossRefGoogle Scholar
  32. 32.
    Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4546 (1982)CrossRefGoogle Scholar
  33. 33.
    Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4559 (1982)CrossRefGoogle Scholar
  34. 34.
    Huster D., Schiller J., Naji L., Kaufmann J., Arnold K. in: NMR Studies of Cartilage: Dynamics, Diffusion and Degradation (Haberland R., Poppl A., Stannarius R., Michel D., eds.), pp. 465–503. Berlin: Springer 2004.Google Scholar
  35. 35.
    Schaefer J.: Macromolecules6, 882 (1973)CrossRefADSGoogle Scholar
  36. 36.
    Lyerla J.R. Jr., Torchia D.A.: Biochemistry14, 5175 (1975)CrossRefGoogle Scholar
  37. 37.
    Saito H., Yokoi M.: J. Biochem. (Tokyo)111, 376 (1992)Google Scholar
  38. 38.
    Griffin R.G.: Nat. Struct. Biol.5, 508 (1998)CrossRefGoogle Scholar
  39. 39.
    Bennett A.E., Griffin R.G., Vega S.: Recoupling of Homo- and Heteronuclear Dipolar Interactions, pp. 3–77. Berlin: Heidelberg 1994.Google Scholar
  40. 40.
    Dusold S., Seebald A.: Annu. Rep. NMR Spectrosc.41, 185 (2000)CrossRefGoogle Scholar
  41. 41.
    Schmidt-Rohr K., Spiess H.W.: Multidimensional Solid-State NMR and Polymers. San Diego: Academic Press 1994.Google Scholar
  42. 42.
    Jelinski L.W., Sullivan C.E., Torchia D.A.: Nature284, 531 (1980)CrossRefADSGoogle Scholar
  43. 43.
    Batchelder L.S., Sullivan C.E., Jelinski L.W., Torchia D.A.: Proc. Natl. Acad. Sci. USA79, 386 (1982)CrossRefADSGoogle Scholar
  44. 44.
    Sarkar S.K., Sullivan C.E., Torchia D.A.: J. Biol. Chem.284, 9762 (1983)Google Scholar
  45. 45.
    Sarkar S.K., Sullivan C.E., Torchia D.A.: Biochemistry24, 2348 (1985)CrossRefGoogle Scholar
  46. 46.
    Sarkar S.K., Hiyama Y., Niu C.H., Young P.E., Gerig J.T., Torchia D.A.: Biochemistry26, 6793 (1987)CrossRefGoogle Scholar
  47. 47.
    Reichert D., Pascui O., deAzevedo E.R., Bonagamba T.J., Arnold K., Huster D.: Magn. Reson. Chem.42, 276 (2004)CrossRefGoogle Scholar
  48. 48.
    Cross T.A., Opella S.J.: J. Mol. Biol.159, 543 (1982)CrossRefGoogle Scholar
  49. 49.
    Grodzinsky A.J., Urban J.P. in: Physical Regulation of Metabolism in Cartilaginous Tissues: Relation to Extracellular Forces and Flows (Reed R.K., ed.), pp. 67–84. London: Portland Press 1995.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Junior Research Group “Solid-State NMR Studies of the Structure of Membrane-associated Proteins”, Biotechnological-Biomedical CenterUniversity of LeipzigLeipzigGermany
  2. 2.Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations