Advertisement

Magnetic-field dependent optically detected ESR in the photoexcited triplet states of bridged Zr(IV) metallocenes

  • S. K. Misra
  • B. Endeward
  • M. Bernardo
  • P. Brant
  • H. Thomann
Article
  • 57 Downloads

Abstract

We report on the magnetic-field-dependent optically detected magnetic resonance (ODMR) spectra for polycrystalline samples of the bridged Zr(IV) metallocenes, Me2Si<(Cp2)ZrCl2 ( (dimethylsilylbis(cyclopentadienyl)zirconium-dichloride) and Me2C<(Cp2)ZrCl2 (iso-propylidenebis(cyclopentadienyl)zirconium-dichloride). ODMR spectra at zero magnetic field were recorded by frequency sweeping a microwave source from 0.1 to 10 GHz with the sample contained in a microwave helix. ODMR spectra at finite magnetic fields were recorded with the sample contained in either a helix or a slotted-tube resonator with a fixed microwave frequency and sweeping the magnetic field. For all experiments, the sample and microwave probes were contained in an immersion dewar cryostat, and the temperature was held at about 2 K. All three zero field ODMR transitions (2|E|, and |D| − |E| and |D|+|E|) were observed in the frequency-swept ODMR spectra recorded at zero and small magnetic fields. The zero-field frequency-swept spectra allowed the determination ofD andE values uniquely. For frequency-swept small-field ODMR spectra recorded at successively higher magnetic fields, each of the ODMR line intensities was observed to increase with increasing magnetic field. This intensity increase was observed for all three ODMR lines, reflecting an increase in the total intensity rather than simply a change in the polarization of the triplet sublevels. The latter would result in a change in the relative intensities of the ODMR lines but would not change simultaneously the intensities of all three lines. The ODMR line intensities increase in proportion toB n, wheren<1. This field dependence is weaker than the expected proportionalB 2 dependence from the Zeeman effect, which likely originates from the magnetic field dependence of the spin relaxation rates between the triplet sublevels. Magnetic-field-swept ODMR spectra recorded at fixed microwave frequencies in the X-band frequency range (9.8 GHz) do not show all three expected classic Pake powder pattern line shape profiles, exhibited by the molecules with their magneticZ, Y, andX axes parallel to the external magnetic field. In particular, the intensity for molecular magneticY-axes parallel to the external magnetic field is completely suppressed. In addition, an external magnetic field dependence in field-swept ODMR spectra was observed, which results in a linear decrease of the ODMR intensity with increasing strength of the external magnetic field over and above that would be expected in a polycrystalline spectrum. The data are analyzed by simulation of the continuous-wave ESR spectrum with the eigenvalues and eigenvectors of the spin Hamiltonian matrix characterizing the triplet state exhibiting the ODMR spectrum, in conjunction with homotopy, as a function of the orientations of the magnetic axes of the various molecules in a polycrystalline sample. This approach is useful to interpret the experimentally observed ODMR transition frequencies andg-values but does not take the amplitudes in the ODMR spectrum. The corrections required to modify the continuous-wave ESR spectral amplitudes that reproduce the observed ODMR amplitudes are effects associated with the ODMR processes.

Keywords

Electron Spin Resonance Spectrum Optically Detect Magnetic Resonance Spin Hamiltonian Optically Detect Magnetic Resonance Spectrum Triplet Sublevel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pfennig B.W., Thompson M.E., Bocarly A.B.: Organometallics12, 649 (1993)CrossRefGoogle Scholar
  2. 2.
    Togni A., Halterman R.L. (eds.): Group IV Metallocenes: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH 1998.Google Scholar
  3. 3.
    Moehring P.C., Coville N.J.J.: Organomet. Chem.1, 479 (1994)Google Scholar
  4. 4.
    Lauher J.W., Hoffmann R.J.: Am. Chem. Soc.98, 1729 (1976)CrossRefGoogle Scholar
  5. 5.
    Bruce M.R.M., Kenter A., Tyler D.R.: J. Am. Chem. Soc.106, 639 (1984)CrossRefGoogle Scholar
  6. 6.
    Petersen J.L., Lichtenberger D.L., Fenske R.F., Dahl L.F.: J. Am. Chem. Soc.97, 6433 (1975)CrossRefGoogle Scholar
  7. 7.
    Gassman P.G., Sowa J.R. Jr., Hill M.G., Mann K.R.: Organometallics14, 4879 (1995)CrossRefGoogle Scholar
  8. 8.
    Calabro D.C., Hubbard J.L., Blevins C.H., Campbell A.C., Lichtenberger D.L.: J. Am. Chem. Soc.103, 6839 (1981)CrossRefGoogle Scholar
  9. 9.
    Harrigan R.W., Hammond G.S., Gray H.B.: J. Organomet. Chem.81, 79 (1974)CrossRefGoogle Scholar
  10. 10.
    Kenney J.W., Boone D.R., Striplin D.R., Chen Y.-H., Hamar K.B.: Organometallics12, 3671 (1993)CrossRefGoogle Scholar
  11. 11.
    Endeward B., Bernardo M., Brant P., Thomann H.: J. Am. Chem. Soc.124, 7916 (2002)CrossRefGoogle Scholar
  12. 12.
    Misra S.K.: J. Magn. Reson.137, 83 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Misra S.K.: J. Magn. Reson.140, 179 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Clarke R.H. (ed.): Triplet State ODMR Spectroscopy. New York: Wiley 1982.Google Scholar
  15. 15.
    Diamond G.M., Jordan R.F., Petersen J.L.: Organometallics15, 4045 (1996); Nifant’ev I.E., Ivchenko P.V.: Organometallics16, 713 (1997)CrossRefGoogle Scholar
  16. 16.
    Mehring M., Freysoldt F.: J. Phys. E Sci. Instrum.13, 894 (1980)CrossRefADSGoogle Scholar
  17. 17.
    Atkins P.W., McLauchlan K.A. in: Chemically Induced Magnetic Polarization (Closs G.L., Lepley A.R., eds.). New York: Interscience 1973; Caldwell R.A.: J. Am. Chem. Soc.114, 1623 (1992)Google Scholar
  18. 18.
    Kamyshny A.L., Suisalu A.P., Aslanov L.A.: Coord. Chem. Rev.117, 1 (1992)CrossRefGoogle Scholar
  19. 19.
    Schmidt J., Wiedenhofer H., von Zelewsky A., Yersin H.: J. Phys. Chem.99, 226 (1995); Yersin H., Humbs W., Strasser J.: Coord. Chem. Rev.159, 325 (1997)CrossRefGoogle Scholar
  20. 20.
    Misra S.K. in: Handbook of Electron Spin Resonance (Poole C.P. Jr., Farach H.AA., ed.), vol. 2, pp. 115–150. New York. American Institute of Physics 1999.Google Scholar
  21. 21.
    Chan I., Pratt D.W. in: Triplet State ODMR Spectroscopy (Clarke R. H., ed.). New York: Wiley 1982.Google Scholar
  22. 22.
    Misra S.K.: Spectrochim. Acta A54, 2257 (1998)CrossRefGoogle Scholar
  23. 23.
    Bowman M.K., Kevan L.: J. Phys. Chem.81, 456 (1977)CrossRefGoogle Scholar
  24. 24.
    Stevens K.W.H.: Rep. Prog. Phys.30, 189 (1967)CrossRefADSGoogle Scholar
  25. 25.
    Poole C.P. Jr., Farach H.A.: Relaxation in Magnetic Resonance. pp. 140–153. New York: Academic Press 1971.Google Scholar
  26. 26.
    Misra S.K., Vasilopoulos P.: J. Phys. C: Condens. Matter13, 1083 (1980)Google Scholar
  27. 27.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in Fortran, pp. 456–462. Cambridge: Cambridge University Press 1992. There are errors in the source code for JACOBI subroutine in this book; for corrections see fef. 12.MATHGoogle Scholar
  28. 28.
    Misra S.K.: J. Magn. Reson.23, 403 (1976)Google Scholar
  29. 39.
    Misra S.K., Subramanian S.: J. Phys. C: Condens. Matter15, 7199 (1982)Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • S. K. Misra
    • 1
  • B. Endeward
    • 2
  • M. Bernardo
    • 2
  • P. Brant
    • 3
  • H. Thomann
    • 2
  1. 1.Department of PhysicsMontrealCanada
  2. 2.Corporate Strategic ResearchExxonMobil Research and Engineering CompanyAnnandaleUSA
  3. 3.Baytown Polymer Science CenterExxonMobil Chemical CompanyBaytownUSA

Personalised recommendations