Applied Magnetic Resonance

, 23:377 | Cite as

On theg-value shift and intersystem crossing in photo-excited radical-triplet systems

  • Y. Iwasaki
  • K. Katano
  • Y. Ohba
  • S. Karawasa
  • N. Koga
  • S. Yamauchi


The electron paramagnetic resonance (EPR) signals of photoexcited quartet (Q1) states for zinc(II) tetra-tert-butyl-phthalocyanine (ZnPc) ligated by 3- and 4-(N-nitronyl-nitroxide) pyridine radicals (3-NOPy, 4-NOPy) were observed in toluene solution at room temperature by means of X-band (9.4 GHz) time-resolved EPR (TREPR) spectroscopy. Theg values of Q1 in the ZnPc-3-NOPy and ZnPc-4-NOPy complexes were found to beg=2.0025 andg=2.0036, respectively. The obtainedg value (2.0036) for ZnPc-4-NOPy is in good agreement with the value (g=2.0037) of the Q1 state calculated under the strong-exchange limit. Theg value (2.0025) is just an average of the Q1 and D1 (g=2.0013) states for ZnPc-3-NOPy. Theg value of Q1 for zinc(II) meso-tetraphenylporphine (ZnTPP) ligated by 3-NOPy showed a slight shift (g=2.0027) at X-band and no shift (g=2.0031) at W-band from the calculatedg value (g=2.0031) (J. Fujisawa, Y. Iwasaki, Y. Ohba, S. Yamauchi, K. Koga, S. Karasawa, M. Fuhs, K. Möbius, S. Weber, Appl. Magn. Reson. 21, 483–493, 2001). These changes in theg value were found to originate from an averaging of the TREPR spectra over the Q1 and photoexcited doublet (D1) states via a fast intersystem crossing (ISC) process. The ISC rates between these two states were estimated by means of numerical calculations with the modified Bloch equations as 1.2·108 and 6·107 s−1 for the ZnTPP-3-NOPy complex at the X- and W-bands, respectively. The lower limit of the ISC rate was obtained as 109s−1 for the ZnPc-3-NOPy complex and the higher limit was found to be 3.1·108 s−1 for the ZnPc-4-NOPy complex.


Electron Paramagnetic Resonance Line Width Excited Triplet Electron Paramagnetic Resonance Parameter TREPR Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Steiner U.E., Ulrich T.: Chem. Rev.89, 51 (1989)CrossRefGoogle Scholar
  2. 2.
    Iwasaki Y., Maeda K., Murai H.: J. Phys. Chem. A105, 2961 (2001)CrossRefGoogle Scholar
  3. 3.
    Mori Y., Sakaguchi Y., Hayashi H.: J. Phys. Chem. A106, 4453 (2002)CrossRefGoogle Scholar
  4. 4.
    Blättler C., Jent F., Paul H.: Chem. Phys. Lett.166, 375 (1990)CrossRefADSGoogle Scholar
  5. 5.
    Kawai A., Okutsu T., Obi K.: J. Phys. Chem.95, 9130 (1991)CrossRefGoogle Scholar
  6. 6.
    Kobori Y., Takeda K., Tsuji K., Kawai A., Obi K.: J. Phys. Chem. A102, 5160 (1998)CrossRefGoogle Scholar
  7. 7.
    Saiful I.M., Fujisawa J., Kobayashi N., Ohba Y., Yamauchi S.: Bull. Chem. Soc. Jpn.72, 661 (1999)CrossRefGoogle Scholar
  8. 8.
    Blank A., Levanon H.: J. Phys. Chem. A105, 4799 (2001)CrossRefGoogle Scholar
  9. 9.
    Shushin A.I.: Chem. Phys. Lett.208, 173 (1993)CrossRefADSGoogle Scholar
  10. 10.
    Atkins P.W., Evans G.T.: Mol. Phys.29, 921 (1975)CrossRefADSGoogle Scholar
  11. 11.
    Fujisawa J., Iwasaki Y., Ohba Y., Yamauchi S., Koga K., Karasawa S., Fuhs M., Möbius K., Weber S.: Appl. Magn. Reson.21, 483 (2001)CrossRefGoogle Scholar
  12. 12.
    Fujisawa J., Ishii K., Ohba Y., Yamauchi S., Fuhs M., Möbius K.: J. Phys Chem. A103, 213 (1999)CrossRefGoogle Scholar
  13. 13.
    Fujisawa J., Ishii K., Ohba Y., Yamauchi S., Fuhs M., Möbius K.: J. Phys. Chem. A101, 5869 (1997)CrossRefGoogle Scholar
  14. 14.
    Mizuochi N., Ohba Y., Yamauchi S.: J. Phys Chem. A101, 5996 (1997)CrossRefGoogle Scholar
  15. 15.
    Mizuochi N., Ohba Y., Yamauchi S.: J. Chem. Phys.111, 3479 (1999)CrossRefADSGoogle Scholar
  16. 16.
    Ishii K., Kobayashi N.: Coord. Chem. Rev.198, 231 (2000)CrossRefGoogle Scholar
  17. 17.
    Ishii K., Ishizaki T., Kobayashi N.: J. Chem. Soc. Dalton Trans.2001, 3227.Google Scholar
  18. 18.
    Ishii K., Takeuchi S., Kobayashi N.: J. Phys. Chem. A105, 6794 (2001)CrossRefGoogle Scholar
  19. 19.
    Corvaja C., Maggini M., Prato M., Scrrano G., Venzin M.: J. Am. Chem. Soc.117, 8857 (1995)CrossRefGoogle Scholar
  20. 20.
    Corvaja C., Maggini M., Ruzzi M., Scorrano G., Toffoletti A.: Appl. Magn. Reson.12, 477 (1997)CrossRefGoogle Scholar
  21. 21.
    Kitano M., Ishimura Y., Inoue K., Koga N., Iwamura H.: Inorg. Chem.33, 6012 (1994)CrossRefGoogle Scholar
  22. 22.
    Goudsmit G.H., Paul H.: Chem. Phys. Lett.208, 73 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Yamauchi S., Takahashi A., Iwasaki Y., Unno M., Ohba Y., Higuchi, J., Blank A., Levanon H.: J. Phys. Chem. A (in press)Google Scholar
  24. 24.
    Pool C.P., Farach H.A.: Relaxation in Magnetic Resonance, pp. 69–75. New York: Academic Press 1971.Google Scholar
  25. 25.
    Weissberger A.: Organic Solvents, p. 31. New York: Wiley 1970Google Scholar
  26. 26.
    Bencini A., Gatteschi D.: Electron Paramagnetic Resonance of Exchange Coupled Systems, pp. 49–57. Berlin: Springer 1990.Google Scholar
  27. 27.
    Akiyama K.: Phthalocyanine (Shirai H., Kobayashi N., eds.), p. 154. Tokyo: IPC 1997.Google Scholar
  28. 28.
    Seth J., Bocian D.F.: J. Am. Chem. Soc.116, 143 (1994)CrossRefGoogle Scholar
  29. 29.
    Ishii K., Fujisawa J., Adachi A., Yamauchi S., Kobayashi N.: J. Am. Chem. Soc.120, 3152 (1998)CrossRefGoogle Scholar
  30. 30.
    Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance, pp. 204–208. New York: Harper & Row 1967.Google Scholar
  31. 31.
    Hore P.J., McLauchlan K.A.: Mol. Phys.42, 533 (1981)CrossRefADSGoogle Scholar
  32. 32.
    Jäger M., Norris J.R. Jr: J. Phys. Chem. A106, 3659 (2002)CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Y. Iwasaki
    • 2
  • K. Katano
    • 2
  • Y. Ohba
    • 2
  • S. Karawasa
    • 1
  • N. Koga
    • 1
  • S. Yamauchi
    • 2
  1. 1.Graduate School of Pharmaceutical ScienceKyushyu UniversityFukuokaJapan
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations