Effects of non-thermal electron distribution and positron density on solitary waves in electron-positron-ion plasmas

  • H. Alinejad
  • S. Sobhanian
  • M. A. Mohammadi
  • J. Mahmoodi
Low Temperature Plasma


A rigorous theoretical investigation has been made of arbitrary amplitude compressive and rarefactive ion acoustic solitary waves in three component plasmas, consisting of ions, positrons and non-thermally distributed electrons. The pseudo-potential approach, which is valid for large amplitude solitary waves and the reductive perturbation technique for small amplitude solitary waves, have been employed. It is shown from both weakly and highly nonlinear analyses that the presence of the fast or non-thermal electrons may allow compressive and rarefactive solitary waves to coexist. It is found that the effect of the positron density changes the minimum value of α (a parameter determining the number of fast electrons present in our model) andM (the Mach number) for which the compressive and rarefactive solitary waves can coexist. The present theory is applicable to analyse arbitrary amplitude ion acoustic waves associated with positrons which may occur in space plasmas.


52.27 52.37 

Key words

non-thermal solitary wave positron 


  1. [1]
    F. B. Rizzato:J. Plasma. Phys. 40 (1988) 289.CrossRefADSGoogle Scholar
  2. [2]
    M. J. Ress:in the very Early universe, edited by G. W. Gibbons, S. W. Hanking, and S. Siklas, Cambridge university press, Cambridge, 1983.Google Scholar
  3. [3]
    W. Misner, K. S. Thorne and J. A. Wheeler:Gravitation, Freeman, San Francisco, 1973, p. 763.Google Scholar
  4. [4]
    H. R. Miller and P. J. Witta:Active Galactive Nuclei, Springer-Verlag, Berlin, 1987, p. 202.Google Scholar
  5. [5]
    F. C. Michel:Rev. Mod. Phys. 54 (1982) 1.CrossRefADSGoogle Scholar
  6. [6]
    S. I. Popel, S. V. Vladimirov, and P. K. Shukla:phys. Plasmas 2 (1995) 716.CrossRefADSGoogle Scholar
  7. [7]
    Y. N. Nejoh:Aust. J. Phys. 50 (1997) 309.ADSGoogle Scholar
  8. [8]
    M. Salahuddin, H. Saleem, and M. Saddiq:phys. Rev. E 66 (2002) 036407.CrossRefADSGoogle Scholar
  9. [9]
    E. H. Tandbery and A. G. Emslie:The physics of solar Flares, Cambridge university press, Cambridge, 1988, p. 124.Google Scholar
  10. [10]
    R. Bostrom:IEEE Trans. Plasma Sci. 20 (1992) 756.CrossRefADSGoogle Scholar
  11. [11]
    P. O. Dovner, A. I. Eriksson, R. Bastom, and B. Holback:Geophys. Res. Lett. 21 (1994) 1827.CrossRefADSGoogle Scholar
  12. [12]
    R. A. Cairns, A. A. Mamun, R. Bingham, R. O. Dendy, R. Bostrom, C. M. C. Nairn, and P. K. Shukla,Geophys. Res. Lett. 22 (1995) 2709.CrossRefADSGoogle Scholar
  13. [13]
    R. A. Cairns, R. Bingham, R. O. Dendy, C. M. C. Nairn, P. K. Shukla, and A. A. Mamun,J. Phys. (France) IV 5 (1995) C6–43.Google Scholar
  14. [14]
    A. A. Mamun:Eur. Phys. J. D 11 (2000) 143.ADSGoogle Scholar
  15. [15]
    A. Mendoza, S. M. Russel, A. A. Mamun,Planetary and Space Science 48 (2000) 599.CrossRefADSGoogle Scholar
  16. [16]
    A. A. Mamun:Phys. Rev. E 55, 2 (1997) 1852.ADSGoogle Scholar
  17. [17]
    R. Z. Sagdeev:Review of plasma physics, Consultants Bureau, New York,4 (1996) 23.Google Scholar
  18. [18]
    E. Infeld and G. Rowlands:Nonlinear wave, soliton and chaos, Cambridge university press, Cambridge, 1990.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • H. Alinejad
    • 1
  • S. Sobhanian
    • 1
  • M. A. Mohammadi
    • 1
  • J. Mahmoodi
    • 2
  1. 1.Department of Atomic & Molecular PhysicsUniversity of TabrizTabrizIran
  2. 2.Physics DepartmentUniversity of QomQomIran

Personalised recommendations