Advertisement

Applied Magnetic Resonance

, Volume 3, Issue 3–4, pp 729–744 | Cite as

Low field63Cu NMR study of indirect nuclear spin-spin coupling in YBa2Cu3O6.9. A new approach to probe strong correlation effects in high-T c superconductors

  • T. Imai
  • C. P. Slichter
  • A. P. Paulikas
  • B. Veal
Article

Abstract

The authors carried out a low field (6.3 kOe) NMR measurement of the Gaussian component of63Cu nuclear spin-spin relaxation rate 1/T 2G at the planar Cu site in a high-T c superconductor YBa2Cu3O6.9 (T c=92 K). They demonstrate that the results provide quantitative information concerning the static spin susceptibility χ′(q) at non-zero wave vector q. The detailed analysis of the data assuming a model susceptibility peaked at the corner of first Brillouin zone q=Q (Q=(π/a, θ/a),a: lattice constant) shows that χ′(q) satisfies a Curie-Weiss law around q=Q. Stoner enhancement over the calculated Lindhard function at q=Q is estimated to be of the order of ∼10–20. They also demonstrate that combined analysis of 1/T 1 and 1/T 2G allows one to judge whether anomalous shift of the low frequency spectral weight of χ″(Q,ω) to higher frequencies (i.e.pseudo gap) exists or not. Application of the method to YBa2Cu3O6.9 revealed no appreciable pseudo gap in the material.

Keywords

Random Phase Approximation Spectral Weight Knight Shift Static Spin Susceptibility Anomalous Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a review, Pennington C.H., Slichter C.P. in: Physical Properties of High Temperature Superconductors II, (Ginsberg D.M., ed.), p. 269. Singapore: World Scientific 1990.Google Scholar
  2. [2]
    Moriya T.: J. Phys. Soc. Jpn.18, 516 (1963)CrossRefADSGoogle Scholar
  3. [3]
    (a) Takigawa M., Hammel P.C., Heffner R.H., Fisk Z.: Phys. Rev.B39, 7371 (1989); (b) Shimizu T., Yasuoka H., Tsuda T., Ueda H., Kosuge K.: Bulletin of Magnetic Resonance12, 39 (1991); (c) Walstedt R.E., Bell R.F., Schneemeyer L.F., Waszczak J.V., Espinosa G.P.: Phys. Rev.B45, 8074 (1992)ADSGoogle Scholar
  4. [4]
    Slichter C.P.: Principles of Magnetic Resonance, (3rd ed.), Berlin: Springer-Verlag 1990.Google Scholar
  5. [5]
    |(a) Mali M., Brinkmann D., Pauli L., Roos J., Zimmermann H., Hulliger J.: Phys. Lett.A124, 112 (1987); (b) Walstedt R.E., Warren, Jr. W.W., Bell R.F., Brennert G.F., Espinosa G.P.: Phys. Rev.B38, 9299 (1988); (c) Kitaoka Y., Hiramatsu S., Kondo T., Asayama K.: J. Phys. Soc. Jpn.56, 3024 (1988); (d) Imai T., Shimizu T., Tsuda T., Yasuoka H., Takabatake T., Nakazawa Y., Ishikawa M.: J. Phys. Soc. Jpn.57, 1771 (1988); Imai T., Shimizu T., Yasuoka H., Ueda Y., Kosuge K.: J. Phys. Soc. Jpn.57, 2280 (1988); (e) Barrett S., Durand D.J., Pennington C.H., Slichter C.P., Friedmann T.A., Rice J.P., Ginzberg D.M.: Phys. Rev.B41, 6283 (1991)ADSGoogle Scholar
  6. [6]
    Imai T., Yasuoka H., Shimizu T., Ueda Y., Kosuge K.: J. Phys. Soc. Jpn.58, 1528 (1989)CrossRefADSGoogle Scholar
  7. [7]
    (a) Rossat-Mignod J., Regnault L.P., Vetter C., Bourget P., Bossy J., Henry J.Y., Lapertot G.: Physica C185–189, 86 (1991); (b) Tranquada J.M., Gehring P.M., Shirane G., Shamoto S., Sato M.: preprint (1992); (c) Mason T.E., Aeppli G., Mook H.A.: Phys. Rev. Lett.68, 1414 (1992); (d) Thurston T.R., Birgeneau R.J., Kastner M.A., Preyer N.W., Shirane G., Fujii Y., Yamada K., Endoh Y., Kakurai K., Matsuda M., Hidaka Y., Murakami T.: Phys. Rev.B40, 4584 (1989)CrossRefGoogle Scholar
  8. [8]
    (a) Hammel P.C., Takigawa M., Heffner R.H., Fisk Z., Ott K.C.: Phys. Rev. Lett.63, 1992 (1989); (b) Yoshinari Y., Yasuoka H., Ueda H., Koga K., Kosuge K.: J. Phys. Soc. Jpn.59, 3698 (1990)CrossRefADSGoogle Scholar
  9. [9]
    (a) Markert J.T., Noh T.W., Russek S.E., Cotts R.M.: Solid State Comm.63, 847 (1987); (b) Alloul H., Ohno T., Mendels P.: Phys. Rev. Lett.63, 700 (1989)CrossRefADSGoogle Scholar
  10. [10]
    (a) Shastry B.S.: Phys. Rev. Lett.63, 1288 (1989); (b) Varma C.M., Littlewood P.B., Schmidt-Rink S., Abrahams E., Ruckenstein A.E.: Phys. Rev. Lett.63, 1996 (1989); (d) Lu J.P., Si Q., Kim J.H., Levin K.: Phys. Rev. Lett.65, 2466 (1990); (e) Bulut N., Hone D., Scalapino D.J., Bickers N.E.: Phys. Rev. Lett.64, 2723 (1990); (f) Millis A.J., Monien H., Pines D.; Phys. Rev.B42, 697 (1990); Monien H., Pines D., Takigawa M.: Phys. Rev.B43, 258 (1991); (g) Moriya T., Takahashi Y., Ueda K.: J. Phys. Soc. Jpn.59, 2905 (1990); (h) Tanamoto T., Kuboki K., Fukuyama H.: J. Phys. Soc. Jpn.60, 3072 (1991); (i) Singh R.R., Gelfand M.P.: Phys. Rev.B42, 996 (1990)CrossRefADSGoogle Scholar
  11. [11]
    Pennington C.H., Slichter C.P.: Phys. Rev. Lett.66, 381 (1991)CrossRefADSGoogle Scholar
  12. [12]
    Mila F., Rice T.M.: Physica C157, 561 (1989)CrossRefADSGoogle Scholar
  13. [13]
    In anspin echo experiment for a quadrupolar splitted NMR line, the local fields due to nuclear spins that are not flipped byH 1 arerefocused by the echo formation. Therefore the second moment given by Eq.(11) is much smaller than the result forfree induction decay experiment calculated by Kambe K., Ollom F.: J. Phys. Soc. Jpn.11, 50 (1956)CrossRefADSGoogle Scholar
  14. [14]
    Pennington C.H., Durand D.J., Slichter C.P., Rice J.P., Bukowski E.D., Ginsberg D.M.: Phys. Rev.B39, 274 (1989)ADSCrossRefGoogle Scholar
  15. [15]
    (a) Horvatic H., Sgransan P., Berthier C., Berthier Y., Butaud P.: Phys. Rev.B39, 7332 (1989); (b) Warren, Jr. W.W., Walstedt R.E., Brennert G.F., Cava R.J., Tycko R., Bell R.F., Dabbagh G.: Phys. Rev. Lett.62, 1193 (1989); (c) Imai T., Yasuoka H., Shimizu T., Ueda Y., Yoshimura K., Kosuge K.: Physica C162–164, 169 (1989)ADSGoogle Scholar
  16. [16]
    Imai T.: J. Phys. Soc. Jpn.59, 2508 (1990)CrossRefADSGoogle Scholar
  17. [17]
    Itoh Y., Yasuoka H., Yoko Fujiwara, Ueda Y., Machi T., Tomeno I., Tai K., Koshizuka N., Tanaka S.: submitted to J. Phys. Soc. Jpn.; also see Itoh Y., Yasuoka H., Ueda Y.: J. Phys. Soc. Jpn.59, 3463 (1990)CrossRefADSGoogle Scholar
  18. [18]
    Song Y.Q., Halperin W.P.: Physica C191, 131 (1992), and private communication.CrossRefADSGoogle Scholar
  19. [19]
    Barret S.E., Martindale J.A., Burand D.J., Pennington C.H., Slichter C.P., Friedmann T.A., Rice J.P., Ginzberg D.M.: Phys. Rev. Lett.66, 108 (1991)CrossRefADSGoogle Scholar
  20. [20]
    1/T 1 results obtained by NQR (zero field) and NMR (8.3 Tesla) agreed within experimental errors, showing that field dependence is less than 3%. We note that very careful measurement is necessary especially for NMR measurement of 1/T 1 suppressingstimulated echo and taking care ofbackground signal originated from adjacent resonance lines.Google Scholar
  21. [21]
    Bulut N., Scalapino D.J.; Phys. Rev. Lett.67, 2798 (1991)CrossRefADSGoogle Scholar
  22. [22]
    Xu J.-H., Watson-Yang T.J., Jaejun Yu, Freeman A.J.: Physics Lett.A120, 489 (1987); Though this value is calculated for doped La2CuO4, it must be a reasonable estimate for the present case (Jaejen Yu; private communication)CrossRefADSGoogle Scholar
  23. [23]
    (a) Zimmermann H., Mali M., Brinkmann D., Karpinski J., Kaldis E., Rusiecki S.: Physica C159, 681 (1989); (b) Machi T., Tomeno I., Miyatake T., Koshizuka N., Tanaka S., Imai T., Yasuoka H.: Physica C173, 32 (1991)CrossRefADSGoogle Scholar
  24. [24]
    Recent NQR observation of the monotonic increase of 1/T 2G for YBa2Cu4O8 below 300 K [17] where 1/T 1 T shows a broad maximum [23] may be an evidence for the existence of pseudo gap in the material.Google Scholar
  25. [25]
    Millis A.J., Monien H.: Phys. Rev.B45, 3059 (1991)Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • T. Imai
    • 1
    • 2
  • C. P. Slichter
    • 1
    • 2
    • 3
    • 4
  • A. P. Paulikas
    • 5
  • B. Veal
    • 1
  1. 1.Science and Technology Center for SuperconductivityUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Materials Science Division Argonne National LaboratoryArgonneUSA

Personalised recommendations