Dipole-dipole interactions of high-spin paramagnetic centers in disordered systems



Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spinS>1/2 are examined. The results provide a basis for the application of pulsed electron-electron double resonance method to the measurement of distances between PCs involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate electron paramagnetic resonance (EPR) line splitting caused by the dipole coupling. This allows calculation of operators projecting an arbitrary wave function onto high-spin PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors — that is, the expectation values for vector spin operators in the PC eigenstates — are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non-Kramers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar line shape of EPR lines is calculated. Analytical relations are obtained for PCs with spinS=1/2 and 1. The dependence of Pake patterns on variations of zero-field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.


External Magnetic Field Spin Probe Effective Spin Pake Doublet Extemal Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abragam A.: Principles of Nuclear Magnetism. Oxford: Clarendon 1961.Google Scholar
  2. 2.
    Anderson P.W.: Comp. Rend.82, 342 (1951)Google Scholar
  3. 3.
    Salikhov K.M., Semenov A.G., Tsvetkov Yu.D.: Elektronnoe Spinovoe Ekho i Ego Primenenie, chapt. 3. Novosibirsk: Nauka 1976.Google Scholar
  4. 4.
    Salikhov K.M., Tsvetkov Yu.D. in: Time Domain Electron Spin Resonance (Kevan L., Schwartz R.N., eds.), p. 231. New York: Wiley 1979.Google Scholar
  5. 5.
    Raitsimring A.M., Salikhov K.M.: Bull. Magn. Reson.7, 184 (1985)Google Scholar
  6. 6.
    Dzuba S.A., Kawamori A.: Concepts Magn. Reson.8, 49 (1996)CrossRefGoogle Scholar
  7. 7.
    Milov A.D., Maryasov A.G., Tsvetkov Yu.D.: Appl. Magn. Reson.15, 107 (1998)CrossRefGoogle Scholar
  8. 8.
    Eaton G.R., Eaton S.S., Berliner L.J. (eds.): Distance Measurements in Biological Systems by EPR. Biological Magnetic Resonance, vol. 19. New York: Kluwer Academic/Plenum 2000.Google Scholar
  9. 9.
    Freed J.H.: Annu. Rev. Phys. Chem.51, 655 (2000).CrossRefGoogle Scholar
  10. 10.
    Prisner T., Rohrer M., MacMillan F.: Annu. Rev. Phys. Chem.52, 279 (2001)CrossRefGoogle Scholar
  11. 11.
    Dzuba S.A.: Usp. Khim.74, 686 (2005)Google Scholar
  12. 12.
    Altshuler S.A., Mokeev A.A.: Fiz. Tverd. Tela (Leningrad)11, 35 (1969)Google Scholar
  13. 13.
    Smith T.D., Pilbrow J.R.: Coord. Chem. Rev.13, 173 (1974)CrossRefGoogle Scholar
  14. 14.
    Yablokov Yu.V., Voronkova V.K., Mosina L.V.: Paramagnitnyi Rezonans Obmennykh Klasterov. Moscow: Nauka 1988.Google Scholar
  15. 15.
    Grant W.J.C., Strandberg M.W.P.: Phys. Rev.135, A715 (1964)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press 1970.Google Scholar
  17. 17.
    Koulougliotis D., Tang X.-S., Diner B.A., Brudwig G.W.: Biochemistry34, 2850 (1995)CrossRefGoogle Scholar
  18. 18.
    Hara H., Kawamori A.: Appl. Magn. Reson.13, 241 (1997)CrossRefGoogle Scholar
  19. 19.
    White G.F., Ottignon L., Field S., Marritt S., Cheesman M.R., Oganesyan V.S., Thompson A.J., Yap L.-L., Gennis R.B. in: Advanced Techniques and Applications of EPR. Abstracts of 39th Annual International Meeting of Electron Spin Resonance Group of Royal Society of Chemistry, Edinburgh, UK, 2006, P.66.Google Scholar
  20. 20.
    Gaffney B.J., Silverstone H.J. in: EMR of Paramagnetic Molecules. Biological Magnetic Resonance, vol. 13 (Berliner L.J., Reuben J., eds.), p. 1. New York: Plenum 1993.Google Scholar
  21. 21.
    Muha G.M.: J. Chem. Phys.73, 4139 (1980)CrossRefADSGoogle Scholar
  22. 22.
    Muha G.M.: J. Magn. Reson.49, 431 (1982)Google Scholar
  23. 23.
    Muha G.M.: J. Magn. Reson.53, 85 (1983)Google Scholar
  24. 24.
    Broida J.G., Williamson S.G.: Comprehensive Introduction to Linear Algebra. Reading, Mass.: Addison-Wesley 1989.MATHGoogle Scholar
  25. 25.
    Maryasov A.G., Bowman M.K.: J. Phys. Chem.B 108, 9412 (2004)Google Scholar
  26. 26.
    Untidt T.S., Nielsen N.C.: Phys. Rev. E65, 021108 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Zeer E.P., Zobov V.E., Falaleev O.V.: Novye Effekty v YaMR Polikristallov. Novosibirsk: Nauka 1991.Google Scholar
  28. 28.
    Bedilo A.F., Maryasov A.G.: J. Magn. Reson. A116, 87 (1995)CrossRefGoogle Scholar
  29. 29.
    Maryasov A.G., Dzuba S.A., Salikhov K.M.: J. Magn. Reson.50, 432 (1982)Google Scholar
  30. 30.
    Kurshev V.V., Raitsimring A.M., Salikhov K.M.: Fiz. Tverd. Tela (Leningrad)30, 420 (1988)Google Scholar
  31. 31.
    Hagen W.R.: Adv. Inorg. Chem.38, 165 (1992)CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. G. Maryasov
    • 1
  • M. K. Bowman
    • 2
  • Yu. D. Tsvetkov
    • 1
  1. 1.Institute of Chemical Kinetics and CombustionRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Structural Biology and MicroimagingBattelle NorthwestRichlandUSA

Personalised recommendations