Advertisement

Applied Magnetic Resonance

, 3:1045 | Cite as

Hydration and protein dynamics: an ESR and ST-ESR spin labelling study of human serum albumin

  • P. Marzola
  • S. Cannistraro
Article

Abstract

Human serum albumin has been studied at low hydration level by the ESR spin labelling technique, under the assumption that a covalently bound spin-label is a reporter of the protein internal dynamics. At room temperature, the presence of a double component signal allowed us to monitor the influence of increasing hydration level on internal protein dynamics as well as on the superficial water dynamics. The ESR results have shown that the first 20 g of water per 100 g of protein activate the internal protein dynamics and that superficial water dynamics starts at higher hydration values. ESR experiments at low temperature have shown that at −160°C ≲T≲−80°C, the label experiences an increasing environmental polarity with increasing temperature in the samples with hydration values higher than about 20 g of water per 100 g of protein. The results are discussed in connection with both conformational substates of the protein and hydration water dynamics.

Keywords

Human Serum Albumin Spin Label Rotational Correlation Time Hydration Level Conformational Substate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Shirley W.M., Bryant R.G.: J. Am. Chem. Soc.104, 2910–2918 (1982)CrossRefGoogle Scholar
  2. [2]
    Poole P.L., Finney J.L.: Int. J. Biol. Macromol.5, 308–310 (1983)CrossRefGoogle Scholar
  3. [3]
    Nusser W., Kimmich R., Winter F.: J. Phys. Chem.92, 6808–6814 (1988)CrossRefGoogle Scholar
  4. [4]
    Alcala J.R., Gratton E., Prendergast F.G.: Biophys. J.51, 925–936 (1987)CrossRefGoogle Scholar
  5. [5]
    Singh G.P., Parak F., Hunklinger S., Dransfeld K.: Phys. Rev. Lett.4, 685–688 (1981)CrossRefADSGoogle Scholar
  6. [6]
    Goldanski V.I., Krupyanskii Y.F.: Quart. Rev. Biophys.22, 39–92 (1989)CrossRefGoogle Scholar
  7. [7]
    Ansari A., Berendzen J., Bowne S.F., Frauenfelder H., Iben I.E.T., Sauke T.B., Shyamsunder E., Young R.D.: Proc. Natl. Acad. Sci. USA82, 5000–5004 (1985)CrossRefADSGoogle Scholar
  8. [8]
    Frauenfelder H., Gratton E.: Methods in Enzymology127, 207–216 (1986)CrossRefGoogle Scholar
  9. [9]
    Parak F., Heidemeier J., Nienhaus G.U.: J. Mol. Biol.161, 177–194 (1982)CrossRefGoogle Scholar
  10. [10]
    Parak F., Hartman H., Aumann K.D., Reuscher H., Rennekamp G., Bartunik H. Steigemann W.: Eur. Biophys. J.15, 237–249 (1987)CrossRefGoogle Scholar
  11. [11]
    Doster W., Cusack S., Petry W.: Nature337, 754–756 (1989)CrossRefADSGoogle Scholar
  12. [12]
    Cusack S., Doster W.: Biophys J.58, 243–251 (1990)CrossRefADSGoogle Scholar
  13. [13]
    Doster W., Bachleitner A., Dunau R., Hiebl M. Luscher E.: Biophys. J.50, 213–219 (1986)CrossRefADSGoogle Scholar
  14. [14]
    Elber R., Karplus M.: Science235, 318–312 (1987)CrossRefADSGoogle Scholar
  15. [15]
    Careri G., Giansanti A., Rupley J.A.: Phys. Rev.A37, 2703–2705 (1988)CrossRefADSGoogle Scholar
  16. [16]
    Rupley J.A., Yang P.H., Tollin G. in: Water in Polymers (Rowland S.P., ed.) ACS Symposium Series No. 127, pp. 111–132. Washington DC: American Chemical Society 1980.CrossRefGoogle Scholar
  17. [17]
    Schinkel J.E., Downer N.W., Rupley J.A.: Biochemistry24, 352–366 (1985)CrossRefGoogle Scholar
  18. [18]
    Krinichnyi V.I., Grinberg O.Ya., Bogatyrenko V.R., Likhtenshtein G.I., Lebedev Ya.S.: Biofizika30, 216–219 (1985)Google Scholar
  19. [19]
    Bogatyrenko V.R., Likhtenshtein G.I.: Biofizika30, 962–966 (1985)Google Scholar
  20. [20]
    Likhtenshtein G.I.: Stud. Biophys.111, 89–100 (1986)Google Scholar
  21. [21]
    Likhtenshtein G.I., Kulikov A.V., Kotelnikov A.I., Levchenko L.A.: J. Biochem. Biophys. Methods12, 1–28 (1986)CrossRefGoogle Scholar
  22. [22]
    Janzen H., Matuszak E., Goldammer E., Wenzel H.R.: Z. Naturforsch.43c, 285–293 (1988)Google Scholar
  23. [23]
    Steinhoff H.J., Lieutenant K., Schlitter J.: Z. Naturforsch.44c, 280–288 (1989)Google Scholar
  24. [24]
    Steinhoff H.J.: Eur. Biophys. J.18, 57–62 (1990)CrossRefGoogle Scholar
  25. [25]
    Cornell C.N., Chang R., Kaplan L.J.: Arch. Biochem. Biophys.:209, 1–6 (1981)CrossRefGoogle Scholar
  26. [26]
    Poole P.L., Finney J.L.: Methods in Enzymology127, 284–293 (1986)CrossRefGoogle Scholar
  27. [27]
    Giugliarelli G., Tancini P., Canninstraro S: J. Phys. E. (Sci. Instrum.)22, 702–708 (1989)CrossRefADSGoogle Scholar
  28. [28]
    Bruno S., Gliozzi A., Cannistraro S.: J. Physique47, 1555–1563 (1986)CrossRefGoogle Scholar
  29. [29]
    Freed J.H. in: Spin Labelling Theory and Applications (Berliner L.J., ed.), vol. 1, pp. 53–132. New York: Academic Press 1976.Google Scholar
  30. [30]
    Schneider D.J., Freed J.H. in: Biological Magnetic Resonance (Berliner L.J., Reuben J., eds.), vol. 8, pp. 1–76. New York: Plenum Press 1989.Google Scholar
  31. [31]
    Griffith O.H., Jost P.C. in: Spin Labelling Theory and Applications (Berliner L.J., ed.), vol. 1, pp. 453–523. New York: Academic Press 1976.Google Scholar
  32. [32]
    Steinhoff H.J.: J. Biochem. Biophys. Meth.17, 237–248 (1988)CrossRefGoogle Scholar
  33. [33]
    Robinson B.H., Dalton L.R.: J. Chem. Phys.72, 1312–1324 (1980)CrossRefADSGoogle Scholar
  34. [34]
    Hemminga M.A.: Chem. Phys. Lipids32, 323–383 (1983)CrossRefGoogle Scholar
  35. [35]
    Thomas D.D., Dalton L.R., Hyde J.S.: J. Chem. Phys.65, 3006–3024 (1976)CrossRefADSGoogle Scholar
  36. [36]
    Marzola P., Pinzino C., Veracini C.A.: Langmuir7, 238–242 (1991)CrossRefGoogle Scholar
  37. [37]
    Morrisett J.D. in: Spin Labelling Theory and Applications (Berliner L.J., ed.), vol. 1, pp. 273–338. New York: Academic Press 1976.Google Scholar
  38. [38]
    Belonogova O.V., Frolov E.N., Illuystrov N.V., Likhtenshtein G.I.: Mol. Biol. (Moscow)13, 567–576 (1979)Google Scholar
  39. [39]
    Marsh D.: Biochemistry19, 1632–1637 (1980)CrossRefGoogle Scholar
  40. [40]
    Johnson M.E., Lee L., Fung L.W.M.: Biochemistry21, 4459–4467 (1982)CrossRefGoogle Scholar
  41. [41]
    Frolov E.N., Kharakhonycheva N.V., Likhtenshtein G.I.: Mol. Biol. (Moscow)8, 886–893 (1974)Google Scholar
  42. [42]
    Kuntz I.D., Kauzmann W.: Adv. Protein Chem.28, 239–345 (1974)CrossRefGoogle Scholar
  43. [43]
    Likhtenshtein G.I., Kotelnikov A.I.: Mol. Biol. (Moscow)17, 505–518 (1983)Google Scholar
  44. [44]
    Chien J.W.C.: J. Mol. Biol.133, 385–398 (1979)CrossRefADSGoogle Scholar
  45. [45]
    Johnson M.E.: Biochemistry20, 3319–3328 (1981)CrossRefGoogle Scholar
  46. [46]
    Oakes J.: J. Chem. Soc. Faraday I72, 216–227 (1976)CrossRefGoogle Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • P. Marzola
    • 1
    • 2
  • S. Cannistraro
    • 1
    • 2
  1. 1.Dipartimento di Scienze AmbientaliUniversità della TusciaViterboItaly
  2. 2.Unità INFM-CNRDipartimento di Fisica dell’Università di PerugiaItaly

Personalised recommendations