Advertisement

Applied Magnetic Resonance

, 22:431 | Cite as

Separation of cross-relaxation and exchange in two-site spin systems without resolved couplings

  • V. V. Klochkov
  • F. Kh. Karatayeva
  • R. A. Shaikhutdinov
  • B. I. Khairutdinov
  • M. -A. Molins
  • M. Pons
Article

Abstract

Variable temperature two-dimensional nuclear Overhauser enhancement experiment (2-D NOESY) is used to extract the rate constants and cross-relaxation rates that contribute to the same cross-peaks in NOESY spectra. Rate constants (k AB) and cross-relaxation rates (R AB) for two-site spin systems are related to the ratio between the cross-peak and diagonal peak integrals (F) by the expression:R AB -k AB = (1/2τ m)ln[(1 -F)/(1 +F)], where τm is the mixing time. As a model, we investigated the exchange processes in a system of dimer calix[4]arenes of C4v symmetrical configuration with guest inclusion (benzene or benzene-d6), where the measurement of exchange processes is hindered by the presence of strong nuclear Overhauser enhancement between protons in adjacent aromatic rings in the cone conformation of the calix[4]arene.

Keywords

Nuclear Magnetic Resonance Aromatic Proton NOESY Spectrum Arene Derivative Cone Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jackman L.M., Cotton F.A. (eds.): Dynamic Nuclear Magnetic Resonance Spectroscopy, part I, p. 660. New York: Academic Press 1975.Google Scholar
  2. 2.
    Binsch G.: J. Am. Chem. Soc.91, 1304–1309 (1969); Hofner D., Lesko S.A., Binsch G.: Org. Magn. Reson.11, 179–196 (1978); Aganov A.V., Klochkov V.V., Samitov Yu.Yu.: Usp. Khim.54, 1585-1612 (1985)CrossRefGoogle Scholar
  3. 3.
    Sandström J.: Dynamic NMR Spectroscopy, p. 226. London: Academic Press 1982.Google Scholar
  4. 4.
    Ernst R.R., Bodenhausen B., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions, p. 610. Oxford: Oxford University Press 1987.Google Scholar
  5. 5.
    Van de Ven F.J.M.: Multidimensional NMR in Liquids: Basic Principles and Experimental Methods, p. 399. New York: Wiley-VCH 1995.Google Scholar
  6. 6.
    Wagner G., Bodenhausen G., Muller N., Rance M., Sorensen O.W., Ernst R.R., Wuthrich K: J. Am. Chem. Soc.107, 6440–6446 (1985)CrossRefGoogle Scholar
  7. 7.
    Desvaux H., Berthault P., Birlirakis N., Goldman M.: J. Magn. Reson. A108, 219–229 (1994); Fejzo J., Westler W.M., Macura S., Markley J.L.: J. Magn. Reson.92, 195–203 (1991)CrossRefGoogle Scholar
  8. 8.
    States D.J., Haberkorn R.A., Ruben D.J.: J. Magn. Reson.48, 286–292 (1982)Google Scholar
  9. 9.
    Atkins P.W.: Physical Chemistry, p. 995. Oxford: Oxford University Press 1990.Google Scholar
  10. 10.
    Shimizu K.D., Rebek J. Jr.: Proc. Natl. Acad. Sci. USA92, 12403–12407 (1995); Mogck O., Bohmer V., Vogt V.: Tetrahedron52, 8489–8496 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Mogck O., Pons M., Bohmer V., Vogt W.: J. Am. Chem. Soc.119, 5706–5712 (1997)CrossRefGoogle Scholar
  12. 12.
    Pons M. (ed.): NMR in Supramolecular Chemistry, p. 337. Dordrecht: Kluwer Academic Publishers 1999.Google Scholar
  13. 13.
    Oki M.: Application of Dynamic NMR Spectroscopy to Organic Chemistry, p. 423. New York: VCH Publishers 1985.Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • V. V. Klochkov
    • 1
  • F. Kh. Karatayeva
    • 1
  • R. A. Shaikhutdinov
    • 1
  • B. I. Khairutdinov
    • 1
  • M. -A. Molins
    • 2
  • M. Pons
    • 2
  1. 1.Department of ChemistryKazan State UniversityKazanRussian Federation
  2. 2.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations