Skip to main content
Log in

Separation of cross-relaxation and exchange in two-site spin systems without resolved couplings

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Variable temperature two-dimensional nuclear Overhauser enhancement experiment (2-D NOESY) is used to extract the rate constants and cross-relaxation rates that contribute to the same cross-peaks in NOESY spectra. Rate constants (k AB) and cross-relaxation rates (R AB) for two-site spin systems are related to the ratio between the cross-peak and diagonal peak integrals (F) by the expression:R AB -k AB = (1/2τ m)ln[(1 -F)/(1 +F)], where τm is the mixing time. As a model, we investigated the exchange processes in a system of dimer calix[4]arenes of C4v symmetrical configuration with guest inclusion (benzene or benzene-d6), where the measurement of exchange processes is hindered by the presence of strong nuclear Overhauser enhancement between protons in adjacent aromatic rings in the cone conformation of the calix[4]arene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackman L.M., Cotton F.A. (eds.): Dynamic Nuclear Magnetic Resonance Spectroscopy, part I, p. 660. New York: Academic Press 1975.

    Google Scholar 

  2. Binsch G.: J. Am. Chem. Soc.91, 1304–1309 (1969); Hofner D., Lesko S.A., Binsch G.: Org. Magn. Reson.11, 179–196 (1978); Aganov A.V., Klochkov V.V., Samitov Yu.Yu.: Usp. Khim.54, 1585-1612 (1985)

    Article  Google Scholar 

  3. Sandström J.: Dynamic NMR Spectroscopy, p. 226. London: Academic Press 1982.

    Google Scholar 

  4. Ernst R.R., Bodenhausen B., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions, p. 610. Oxford: Oxford University Press 1987.

    Google Scholar 

  5. Van de Ven F.J.M.: Multidimensional NMR in Liquids: Basic Principles and Experimental Methods, p. 399. New York: Wiley-VCH 1995.

    Google Scholar 

  6. Wagner G., Bodenhausen G., Muller N., Rance M., Sorensen O.W., Ernst R.R., Wuthrich K: J. Am. Chem. Soc.107, 6440–6446 (1985)

    Article  Google Scholar 

  7. Desvaux H., Berthault P., Birlirakis N., Goldman M.: J. Magn. Reson. A108, 219–229 (1994); Fejzo J., Westler W.M., Macura S., Markley J.L.: J. Magn. Reson.92, 195–203 (1991)

    Article  Google Scholar 

  8. States D.J., Haberkorn R.A., Ruben D.J.: J. Magn. Reson.48, 286–292 (1982)

    Google Scholar 

  9. Atkins P.W.: Physical Chemistry, p. 995. Oxford: Oxford University Press 1990.

    Google Scholar 

  10. Shimizu K.D., Rebek J. Jr.: Proc. Natl. Acad. Sci. USA92, 12403–12407 (1995); Mogck O., Bohmer V., Vogt V.: Tetrahedron52, 8489–8496 (1996)

    Article  ADS  Google Scholar 

  11. Mogck O., Pons M., Bohmer V., Vogt W.: J. Am. Chem. Soc.119, 5706–5712 (1997)

    Article  Google Scholar 

  12. Pons M. (ed.): NMR in Supramolecular Chemistry, p. 337. Dordrecht: Kluwer Academic Publishers 1999.

    Google Scholar 

  13. Oki M.: Application of Dynamic NMR Spectroscopy to Organic Chemistry, p. 423. New York: VCH Publishers 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klochkov, V.V., Karatayeva, F.K., Shaikhutdinov, R.A. et al. Separation of cross-relaxation and exchange in two-site spin systems without resolved couplings. Appl. Magn. Reson. 22, 431–438 (2002). https://doi.org/10.1007/BF03166123

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166123

Keywords

Navigation