Applied Magnetic Resonance

, Volume 2, Issue 2, pp 379–395 | Cite as

Optically detected cyclotron resonance in Ge and Si exchange interaction in impact dissociation

  • T. Tomaru
  • T. Ohyama
  • E. Otsuka


We have investigated optically detected cyclotron resonance (ODCR) and ordinary cyclotron resonance (CR) under the same condition, in Ge and Si, which include both high-purity and doped samples. In impact dissociation processes, which are the origin of ODCR, donorbound excitons have larger cross section for impinging electrons than for holes, and conversely, acceptor- bound excitons have larger cross section for holes than for electrons. Moreover, the ratio of impact dissociation cross section for holes to that for electrons varies with the number of excitons bound to an impurity. These phenomena are understood primarily in terms of exchange interaction between impinging carriers and constituents of bound excitons. In addition, it is found that the relative intensity of hole cyclotron resonance against electron resonance is larger in ODCR than in CR. This is understood in terms of exchange interaction by taking the many valley nature of the conduction band into account.


Luminescence Intensity Photoluminescence Spectrum Cyclotron Resonance Landau Level Large Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See reviews by Cavenett, B.C.: Advances in Phys.30, 475 (1981)CrossRefADSGoogle Scholar
  2. [2]
    Baranov, P.G., Veshchunov, Yu.P., Zhitnikov, R.A., Romanov, N.G., Shreter, Yu.G.: Pis’ma Zh. Eksp. Teor. Fiz.26, 369 (1977), translation, Sov. Phys. JETP Lett.26, 249 (1977)Google Scholar
  3. [3]
    Romestain, R., Weisbuch, C.: Phys. Rev. Lett.45, 2067 (1980)CrossRefADSGoogle Scholar
  4. [4]
    Le Si Dang, Neu, G., Romestain, R.: Solid State Commu.44, 1187 (1982)CrossRefADSGoogle Scholar
  5. [5]
    Booth, I.J., Schwerdtfeger, C.F.: phys. stat. sol. (b)130, 749 (1985)CrossRefADSGoogle Scholar
  6. [6]
    Booth, I.J., Schwerdtfeger, C.F.: Solid State Commun.55, 817 (1985)CrossRefADSGoogle Scholar
  7. [7]
    Cavenett, B.C., Pakulis, E.J.: Phys. Rev.B32, 8449 (1985)ADSCrossRefGoogle Scholar
  8. [8]
    Pakulis, E.J., Northrop, G.A.: Appl. Phys. Lett.50, 1672 (1987)CrossRefADSGoogle Scholar
  9. [9]
    Weman, H., Godlewski, M., Monemar, B.: Phys. Rev.B38, 12525 (1988)Google Scholar
  10. [10]
    Wang, F.P., Monemar, B.: Phys. Rev.B41, 10780 (1990)Google Scholar
  11. [11]
    Tomaru, T., Ohyama, T., Otsuka, E.: J. Phys. Soc. Jpn.58, 3718 (1989)CrossRefADSGoogle Scholar
  12. [12]
    Tomaru, T., Ohyama, T., Otsuka, E.: Proceedings of the 20-th International Conference on the Physics of Semiconductors, Thessaloniki 1990. In Press.Google Scholar
  13. [13]
    Rice, T.M., Hensel, J.C., Phillips, T.G., Thomas, G.A. in: Solid State Physics (Ehrenreich, H., Seitz, F., Turnbull, D. eds.), vol.32, New York: Academic 1977.Google Scholar
  14. [14]
    Luttinger, J.M., Kohn, W.: Phys. Rev.97, 869 (1955)MATHCrossRefADSGoogle Scholar
  15. [15]
    Luttinger, J.M.: Phys. Rev.102, 1030 (1956)MATHCrossRefADSGoogle Scholar
  16. [16]
    Otsuka, E.: Jpn. J. Appl. Phys.25, 303 (1986)CrossRefADSGoogle Scholar
  17. [17]
    Pokrovskii, Ya.E.: phys. stat. sol. (a)11, 385 (1972)CrossRefADSGoogle Scholar
  18. [18]
    Sauer, R.: Phys. Rev. Lett.31, 376 (1973)CrossRefADSGoogle Scholar
  19. [19]
    Kosai, K., Gershenzon, M.: Phys. Rev.B9, 723 (1974)CrossRefADSGoogle Scholar
  20. [20]
    Kirczenow, G.: Can. J. Phys.55, 1787 (1977)ADSGoogle Scholar

Copyright information

© Springer 1991

Authors and Affiliations

  • T. Tomaru
    • 1
  • T. Ohyama
    • 1
  • E. Otsuka
    • 1
  1. 1.Department of Physics, College of General EducationOsaka UniversityOsakaJapan

Personalised recommendations