Annals of Nuclear Medicine

, Volume 13, Issue 1, pp 27–32 | Cite as

Effects of ion channel modulators in the influx and efflux of Tc-99m-MIBI

  • Ali S. Arbab
  • Kiyoshi Koizumi
  • Keiji Toyama
  • Takao Arai
  • Tsutomu Araki
Original Article


Possible involvement of cell membrane ion transport systems in the uptake and extrusion of Tc-99m-MIBI was investigated by using various buffers with or without Na+ and Ca++, and ion transport inhibitors in a tumor cell line. The ion transport modulators dimethyl amiloride (DMA), verapamil, flunarizine and monensin were used. The uptake of Tc-99m-MIBI was significantly increased in all buffers containing either Na+ or Ca++ alone or none of them. There was significantly increased uptake of Tc-99m-MIBI especially in buffers without Na+. Verapamil, a L-type Ca++ channel blocker, increased Tc-99m-MIBI uptake in all buffers. Flunarizine, which inhibits Na+/ Ca++ channels, caused significantly increased accumulation of Tc-99m-MIBI only in buffer containing both Na+ and Ca++. Monensin, a sodium ionophore, significantly increased uptake of Tc-99m-MIBI. DMA, a potent Na+/H+ antiport inhibitor, significantly inhibited the uptake of Tc-99m-MIBI in all buffers. In conclusion, Tc-99m-MIBI behaves like Na+ during its uptake and extrusion. Extrusion of Tc-99m-MIBI may involve both verapamil- and flunarizine-sensitive pathways.

Key words

Tc-99m-MIBI tumor cells Na+/Ca++ channels verapamil flunarizine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodenheimer MB, Banka VS, Fooshee CM, Heifant RH. Extent and severity of coronary heart disease. Determinations by thallous chloride Tl-201 myocardial perfusion scanning and comparison with stress electrocardiography.Arch of Inter Med 139: 630–634, 1979.CrossRefGoogle Scholar
  2. 2.
    Maddahi J, Kiat H, Van Train KF, Prigent F, Friedman J, Garcia EV, et al. Myocardial perfusion imaging with technetium-99m-sestamibi SPECT in the evaluation of coronary artery disease.Am J Cardiol 66: 55E-62E, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Piwnica-Worms D, Holman BL. Non-cardiac application of hexakis (alkylisonitrile) technetium-99m-complex.J Nucl Med 31: 1166–1167, 1990.PubMedGoogle Scholar
  4. 4.
    O’Doherty MJ, Kettle AG, Wells P, Collins REC, Coakley AJ. Parathyroid imaging with technetium-99m-sestamibi: preoperative localization and tissue uptake studies.J Nucl Med 33: 313–318, 1992.PubMedGoogle Scholar
  5. 5.
    Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells.Circulation 82: 1826–1838, 1990.PubMedGoogle Scholar
  6. 6.
    Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davidson A, Jones AG. Uptake of the cation hexakis(2-isobutylisonitrile)-technetium-99m by human carcinoma cell linesin vitro.Can Res 50: 2198–2202, 1990.Google Scholar
  7. 7.
    Chiu ML, Kronauge JF, Worms DP. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblast.J Nucl Med 31: 1646–1653, 1990.PubMedGoogle Scholar
  8. 8.
    Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of Tc-99m-tetrofosmin, Tc-99m-MIBI and Tl-201 in tumor cell lines.J Nucl Med 37: 1551–1556, 1996.PubMedGoogle Scholar
  9. 9.
    Arbab AS, Koizumi K, Toyama K, Arai T, Araki T. Ion transport systems in the uptake of Tc-99m-tetrofosmin, Tc-99m-MIBI and Tl-201 in a tumor cell line.Nucl Med Comm 18: 235–240, 1997.CrossRefGoogle Scholar
  10. 10.
    Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts.J Nucl Med 33: 1516–1521, 1992.PubMedGoogle Scholar
  11. 11.
    Piwnica-Worms D, Chiu ML, Budding K, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multi-drugresistant P-glycoprotein with an organo technetium complex.Cancer Res 53: 977–984, 1993.PubMedGoogle Scholar
  12. 12.
    Greenberger LM, Yang CPH, Gindin E, Horwitz SB. Photoaffinity probes for the α1-adrenergic receptor and the calcium channel bind to a common domain in p-glycoprotein.J Biol Chem 256: 4394–4401, 1990.Google Scholar
  13. 13.
    Van der Bliek AM, Borst P. Multidrug resistance.Adv Cancer Res 52: 165–202, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Kostakoglu L, Elahi N, Kïratlï P, Raucan S, Sayek I, Baltali E, et al. Clinical validation of the influence of P-glycoprotein on Technetium-99m-sestamibi uptake in malignant tumors.J Nucl Med 38: 1003–1008, 1997.PubMedGoogle Scholar
  15. 15.
    Vecchio SD, Ciarmiello A, Pace L, Potena MI, Carriero MV, Mainolfi C, et al. Fractional retention of Technetium-99m-sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients.J Nucl Med 38: 1348–1351, 1997.PubMedGoogle Scholar
  16. 16.
    Luker GD, Fracasso PM, Dobkin J, Piwnica-Worms D. Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibiin vivo.J Nucl Med 38: 369–372, 1997.PubMedGoogle Scholar
  17. 17.
    Mickisch GH, Kossig J, Tscada RK, Keilhauer G, Schlick E, Alken PM. Circumvention of multidrug resistance mediated by P-170 glycoprotein using calcium antagonists in primary human renal cell carcinoma.Urologia Internationalis 47: 118–125, 1991.PubMedCrossRefGoogle Scholar
  18. 18.
    Arbab AS, Koizumi K, Toyama K, Arai T, Araki T. Uptake of Tc-99m-tetrofosmin, Tc-99m-MIBI and Tl-201 in rat myocardial cells.J Nucl Med 39: 266–271, 1998.PubMedGoogle Scholar
  19. 19.
    Yashar PR, Fransua M, Frishman WH. The sodium-calcium ion membrane exchanger: physiological significance and pharmacological implications.J Clin Pharmacol 38: 393–401, 1998.PubMedGoogle Scholar
  20. 20.
    Maidorn RP, Cragoe EJ, Tannock IF. Therapeutic potential of analogues of amiloride: inhibition of intracellular pH as a possible mechanism of tumour selective therapy.Br J Cancer 67: 297–303, 1993.PubMedGoogle Scholar
  21. 21.
    McMurchie EJ, Burnard SL, Patten GS, Lee EJ, King RA, Head RJ. Characterization of Na+-H+ antiporter activity associated with human cheek epithelial cells.Am J Physiol 267: C84-C93, 1994.PubMedGoogle Scholar
  22. 22.
    Kuga T, Sadoshima J, Tomoike H, Kanaide H, Akaike N, Nakamura M. Actions of Ca+ antagonists on two types of Ca+ channels in rat aorta smooth muscle cells in primary culture.Circ Res 67: 469–480, 1990.PubMedGoogle Scholar
  23. 23.
    Pauwels PJ, Leysen JE, Janssen PA. Ca++ and Na+ channels involved in neural death. Protection by flunarizine.Life Science 48: 1881–1893, 1991.CrossRefGoogle Scholar
  24. 24.
    Reed PW. Ionophores.In Fleischer S, Paker L, eds.Methods in Enzymology, Vol. LV. New York, Academic press, pp. 435–454, 1979.Google Scholar
  25. 25.
    Leibovitz A, McCombs III WB, Johnston D, McCoy CE, Stinson JC. Brief communication: New human cancer cell lines. 1. SW-13, Small cell carcinoma of the adrenal cortex.J Natl Cancer Inst 51: 691–697, 1973.PubMedGoogle Scholar
  26. 26.
    Sato K, Ishizuka J, Cooper CW, Chung DH, Tsuchiya T, Uchida T, et al. Inhibitory effect of calcium channel blockers on growth of pancreatic cancer cells.Pancreas 9: 193–202, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Zeitler H, Ko Y, Glodny B, Totzke G, Appenheimer M, Sachinidis A, et al. Cell-cycle arrest in G0/G1 phase of growth factor-induced endothelial cell proliferation by various calcium channel blockers.Cancer Detection and Prevention 21: 332–339, 1997.PubMedGoogle Scholar
  28. 28.
    Brochiero E, Raschi C, Ehrenfeld J. Na/Ca exchange in the basolateral membrane of the A6 cell monolayer: role in Cai homeostasis.Europ J Physiol 430: 105–114, 1995.CrossRefGoogle Scholar
  29. 29.
    Rich A, Rae JL. Calcium entry in rabbit corneal epithelial cells: evidence for a nonvoltage dependent pathway.J of Membrane Biology 144: 177–184, 1995.Google Scholar
  30. 30.
    Barry WH, Smith TW. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells.J Physiol 325: 243–260, 1982.PubMedGoogle Scholar
  31. 31.
    Baker PF, Blaustein MP, Hodgkin AL, Steinhardt PA. The influence of Ca on Na efflux in squid axons.J Physiol 200: 431–458, 1969.PubMedGoogle Scholar
  32. 32.
    Piwnica-Worms D, Jacob R, Horres CR, Leiberman M. Na/H exchange in cultured chick heart cells: pHi regulation.J Gen Physiol 85: 43–64, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Mickisch GH, Kossig J, Keilhauer G, Schlick E, Tscada RK, Alken PM. Effects of calcium antagonists in multidrug resistant primary human renal cell carcinomas.Cancer Res 50: 3670–3674, 1990.PubMedGoogle Scholar
  34. 34.
    Kaibara M, Kameyama M. Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig.J Physiol 403: 621–640, 1988.PubMedGoogle Scholar
  35. 35.
    Kaibara M, Mitarai S, Yano K, Kameyama K. Involvement of Na+-H+ antiporter in regulation of L-type Ca2+ channel current by angiotensin II in rabbit ventricular myocytes.Circ Res 75: 1121–1125, 1994.PubMedGoogle Scholar
  36. 36.
    Mori N, Wu D, Furuta H. Membrane potential in isolated epithelial cells of the endolymphatic sac in the guinea-pig.Acta Oto-laryngologica 118: 192–197, 1998.PubMedCrossRefGoogle Scholar
  37. 37.
    Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. Contribution of reverse-mode sodium-calcium exchange to contractions in failing human left ventricular myocytes.Cardiovascular Res 37: 424–431, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Ali S. Arbab
    • 1
  • Kiyoshi Koizumi
    • 2
  • Keiji Toyama
    • 1
  • Takao Arai
    • 1
  • Tsutomu Araki
    • 1
  1. 1.Department of RadiologyYamanashi Medical UniversityYamanashiJapan
  2. 2.Department of RadiologyTokyo Medical College Hachioji Medical CenterJapan

Personalised recommendations