International Journal of Hematology

, Volume 76, Supplement 2, pp 96–104 | Cite as

β-Thalassaemia prototype of a single gene disorder with multiple phenotypes

  • Swee Lay Thein
Thalassemia and Hemoglobinopathy


As the defective genes for more and more genetic disorders become unravelled, it is clear that patients with the same genotype can have many different clinical conditions even in monogenic disorders. The remarkable phenotypic diversity of the βthalassaemias is prototypical of how the wide spectrum in disease severity can be generated. The most reliable and predictive factor of disease phenotype is the nature of the mutation at the β-globin locus itself. However, relating phenotype to genotype is complicated by the complex interaction of the environment and other genetic factors at the secondary and tertiary levels, some implicated, and others, as yet unidentified. This article reviews the clinical and haematological diversity encountered in βthalassaemia and their relationship with the under-lying genotypes.


Sickle Cell Disease Thalassemia Globin Gene Thalassaemia Major Globin Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weatherall DJ, Clegg JB, editors. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Science; 2001.Google Scholar
  2. 2.
    Forget BG. Molecular Genetics of the Human Globin Genes. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press; 2001. p. 117–130.Google Scholar
  3. 3.
    Stamatoyannopoulos G. Molecular and Cellular Basis of Hemeoglobin Switching. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press; 2001. p. 131–145.Google Scholar
  4. 4.
    Schrier SL. Pathophysiology of thalassemia.Curr Opin Hematol. 2002;9:123–126.PubMedCrossRefGoogle Scholar
  5. 5.
    Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. In: Rodgers GP, editor. Bailliére’s Clinical Haematology. London: Bailliere Tindall; 1998. p. 1–52.Google Scholar
  6. 6.
    Thein SL. Baillières Clinical Haematology: Beta thalassaemia in sickle cell disease and thalassaemia. In: Rodgers GP, editor. Sickle Cell Disease and Thalassaemia. London: Baillire Tindall; 1998. p. 91–126.Google Scholar
  7. 7.
    Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy.Hum Mol Genet. 2001;10:2797–2802.PubMedCrossRefGoogle Scholar
  8. 8.
    Huisman THJ, Carver MFH, Efremov GD. A Syllabus of Human Hemoglobin Variants. 2nd ed. Augusta, GA, USA: The Sickle Cell Anemia Foundation; 1998.Google Scholar
  9. 9.
    Divoky V, Indrak K, Mrug M, Brabec V, Huisman THJ, Prchal JT. A novel mechanism of β thalassemia: the insertion of L1 retrotransposable element into β globin IVS II.Blood. 1996;88:148a.Google Scholar
  10. 10.
    Maquat LE. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells.RNA. 1995;1:453–465.PubMedGoogle Scholar
  11. 11.
    Maquat LE, Carmichael GG. Quality control of mRNA function.Cell. 2001;104:173–176.PubMedCrossRefGoogle Scholar
  12. 12.
    Rund D, Filon D, Strauss N, Rachmilewitz EA, Oppenheim A. Mean corpuscular volume of heterozygotes for β-thalassemia correlates with the severity of mutations.Blood. 1991;79:238–243.Google Scholar
  13. 13.
    Maragoudaki E, Kanavakis E, Trager-Synodinos J, et al. Molecular, haematological and clinical studies of the −101 C->T substitution in the β-globin gene promoter in 25 β-thalassaemia intermedia patients and 45 heterozygotes.Br J Haematol. 1999;107:699–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Ho PJ, Hall GW, Luo LY, Weatherall DJ, Thein SL. Beta thalassemia intermedia: is it possible to consistently predict phenotype from genotype?Br J Haematol. 1998;100:70–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Camaschella C, Maza U, Roetto A, et al. Genetic interactions in thalassemia intermedia: analysis of β-mutations, α-genotype, γ-promoters, and β- LCR hypersensitive sites 2 and 4 in Italian patients.Am J Hematol. 1995;48:82–87.PubMedGoogle Scholar
  16. 16.
    Thein SL, Hesketh C, Wallace RB, Weatherall DJ. The molecular basis of thalassaemia major and thalassaemia intermedia in Asian Indians: application to prenatal diagnosis.Br J Haematol. 1988;70:225–231.PubMedCrossRefGoogle Scholar
  17. 17.
    Craig JE, Kelly SJ, Barnetson R, Thein SL. Molecular characterization of a novel 10.3 kb deletion causing β-thalassaemia with unusually high Hb A2.Br J Haematol. 1992; 82:735–744.PubMedCrossRefGoogle Scholar
  18. 18.
    Thein SL, Hesketh C, Taylor P, et al. Molecular basis for dominantly inherited inclusion body β-thalassemia. Proceedings of the National Academy of Sciences.USA. 1990;87:3924–3928.CrossRefGoogle Scholar
  19. 19.
    Thein SL. Dominant β thalassaemia: molecular basis and pathophysiology.Br J Haematol. 1992;80:273–277.PubMedCrossRefGoogle Scholar
  20. 20.
    Thein SL. Is it dominantly inherited b thalassaemia or just a β-chain variant that is highly unstable?Br J Haematol. 1999;107:12–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Ho PJ, Wickramasinghe SN, Rees DC, Lee MJ, Eden A, Thein SL. Erythroblastic inclusions in dominantly inherited β thalassaemias.Blood. 1997;89:322–328.PubMedGoogle Scholar
  22. 22.
    Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay.Cell. 1999;96:307–310.PubMedCrossRefGoogle Scholar
  23. 23.
    Thein SL. Structural Variants with a b-Thalassemia Phenotype. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press, Cambridge, UK; 2001. p. 342–355.Google Scholar
  24. 24.
    Bunn HF, Forget BG. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia, PA: W. B. Saunders Company, 1986.Google Scholar
  25. 25.
    Camaschella C, Kattamis AC, Petroni D, et al. Different hematological phenotypes caused by the interaction of triplicatted α-globin genes and heterozygous β-thalassemia.Am J Hematol. 1997;55:83–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Traeger-Synodinos J, Kanavakis E, Vrettou C, Maragoudaki E, Michael T, Metaxotou-Mavromati A. The triplicated α-globin gene locus in β-thalassaemia heterozygotes: clinical, haematological, biosynthetic and molecular studies.Br J Haematol. 1996;95:467–471.PubMedCrossRefGoogle Scholar
  27. 27.
    Garner C, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematological variables: a twin heritability study.Blood. 2000;95:342–346.PubMedGoogle Scholar
  28. 28.
    Garner C, Tatu T, Game L, et al. A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis.GeneScreen. 2000;1:9–14.CrossRefGoogle Scholar
  29. 29.
    Wood WG. Hereditary Persistence of Fetal Hemoglobin and δβ Thalassemia. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, editors. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press, Cambridge, UK; 2001. p. 356–388.Google Scholar
  30. 30.
    Galanello R, Dessi E, Melis MA, et al. Molecular analysis of βo-thalassemia intermedia in Sardinia.Blood. 1989;74:823–827.PubMedGoogle Scholar
  31. 31.
    Craig JE, Rochette J, Fisher CA, et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach.Nature Genetics. 1996; 12:58–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Craig JE, Rochette J, Sampietro M, et al. Genetic heterogeneity in heterocellular hereditary persistence of fetal hemoglobin.Blood. 1997;90:428–434.PubMedGoogle Scholar
  33. 33.
    Dover GJ, Smith KD, Chang YC, et al. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2Blood. 1992;80:816–824.PubMedGoogle Scholar
  34. 34.
    Garner CP, Tatu T, Best S, Creary L, Thein SL. Evidence for Genetic Interaction between the beta-globin complex and chromosome 8q in the expression of fetal hemoglobin.Am J Hum Genet. 2002;70:793–799.PubMedCrossRefGoogle Scholar
  35. 35.
    Thein SL, Craig JE. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin.Hemoglobin. 1998;22:401–414.PubMedCrossRefGoogle Scholar
  36. 36.
    Badens C, Mattei MG, Imbert AM, et al. A novel mechanism for thalassaemia intermedia.The Lancet. 2002;359:132–133.CrossRefGoogle Scholar
  37. 37.
    Galanello R, Perseu L, Melis MA, et al. Hyperbilirubinaemia in heterozygous b- thalassaemia is related to co-inherited Gilbert’s syndrome.Br J Haematol. 1997;99:433–436.PubMedCrossRefGoogle Scholar
  38. 38.
    Galanello R, Piras S, Barella S, et al. Cholelithiasis and Gilbert’s syndrome in homozygous β-thalassaemia.Br J Haematol. 2001;115:926–928.PubMedCrossRefGoogle Scholar
  39. 39.
    Sampietro M, Lupica L, Perrero L, Comino A, Martinez di Montemuros F. The expression of uridine diphosphate glucuronosyltransferase gene is a major determinant of bilirubin level in heterozygous β-thalassaemia and in glucose-6-phosphate.Br J Haematol. 1997;99:437–439.PubMedCrossRefGoogle Scholar
  40. 40.
    Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UCP-glucuronosultransferase 1 in Gilbert’s syndrome.New England J Medicine. 1995;333:1171–1175.CrossRefGoogle Scholar
  41. 41.
    Passon RG, Howard TA, Zimmerman SA, Schultz WH, Ware RE. Influence of Bilirubin Uridine Diphosphate- Glucuronosyltransferase 1A Promoter Polymorphisms on Serum Bilirubin Levels and Cholelithiasis in Children With Sickle Cell Anemia.Am J Pediatr Hematol Oncol. 2001;23:448–451.CrossRefGoogle Scholar
  42. 42.
    Rees DC, Luo LY, Thein SL, Sing BM, Wickramasinghe S. Nontransfusional iron overload in thalassemia: Association with hereditary hemochromatosis.Blood. 1997;90:3234–3236.PubMedGoogle Scholar
  43. 43.
    Piperno A, Mariani R, Arosio C, et al. Haemochromatosis in patients with beta-thalassaemia trait.Br J Haematol. 2000;111:908–914.PubMedCrossRefGoogle Scholar
  44. 44.
    Merryweather-Clarke AT, Pointon JJ, Shearman JD, Robson KJH. Global prevalence of putative haemochromatosis mutations.J Medical Genetics. 1997;34:275–278.CrossRefGoogle Scholar
  45. 45.
    Andrews N. Iron homeostasis: insights from genetics and animal models.Nature Reviews Genetics. 2000;1:208–216.PubMedCrossRefGoogle Scholar
  46. 46.
    Wonke B. Bone disease in b-thalassaemia major.Br J Haematol. 1998;103:897–901.PubMedCrossRefGoogle Scholar
  47. 47.
    Dresner Pollack R, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW. Bone mineral metabolism in adults with beta-thalassaemia major and intermedia.Br J Haematol. 2000; 111:902–907.PubMedCrossRefGoogle Scholar
  48. 48.
    Economou-Peterson E, Aesspopos A, Kladi A, et al. Apolipoprotein E e4 allele as a genetic risk factor for left ventricular failure in homozygous β-thalassemia.Blood. 1998;92:3455–3459.Google Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Swee Lay Thein
    • 1
  1. 1.Department of Haematological Medicine, Guy’s, King’s & St Thomas’ School of MedicineDenmark Hill CampusLondonUK

Personalised recommendations