Advertisement

Clinical application of62Zn/62Cu positron generator: Perfusion and plasma pool images in normal subjects

  • Hidehiko Okazawa
  • Yasuhisa Fujibayashi
  • Yoshiharu Yonekura
  • Nagara Tamaki
  • Sadahiko Nishizawa
  • Yasuhiro Magata
  • Koichi Ishizu
  • Tatsuro Tsuchida
  • Norihiro Sadato
  • Junji Konishi
  • Akira Yokoyama
  • Ren Iwata
  • Tatsuo Ido
Original Article

Abstract

We have developed a new62Zn/62Cu positron generator, and applied it for PET imaging of perfusion and plasma volume in 5 normal subjects. The generator makes it possible by a simple procedure to obtain62Cu eluate and labeling compounds sufficiently every 40–60 minutes.62Cu labeled pyruvaldehyde bis(N4-methylthiosemicarbazone) copper II (62Cu-PTSM) was employed for cerebral and my ocardial perfusion imaging and62Cu labeled human serum albumin-dithiosemicarbazone (62Cu-HSA-DTS) was used for plasma pool imaging. The images of cerebral blood flow, cerebral plasma volume and myocardial perfusion were excellent. In addition, the analysis of tissue activity and blood activity demonstrated the microspheric character of62Cu-PTSM. Correction of arterial activity with the standard disappearance curve of62Cu-PTSM suggested the possibility of quantifying blood flow. The results of this study indicate the capability of the62Zn/62Cu generator for wide clinical use without an in-house cyclotron.

Key words

62Cu-PTSM 62Cu-HSA-DTS PET perfusion tracer plasma pool imaging 

References

  1. 1.
    Robinson GD, Zielinski FW, Lee AW. The zinc-62/copper-62 generator: a convenient source of copper-62 radiopharmaceuticals.Int J Appl Radiat Isot 31: 111–116, 1980.CrossRefPubMedGoogle Scholar
  2. 2.
    Green MA. A positron copper radiopharmaceutical for imaging the heart and brain: copper-labeled pyruvaldehyde bis(N4-methylthiosemicarbazone).Nucl Med Biol 14: 59–61, 1987.Google Scholar
  3. 3.
    Green MA, Klippenstein DL, Tennison JR. Copper(II) bis (thiosemicarbazone) complexes as potential tracers forevaluation of cerebral and myocardial blood flow with PET.J Nucl Med 29: 1549–1557, 1988.PubMedGoogle Scholar
  4. 4.
    Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Rubio FF, et al. Copper-62-labeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II): synthesis andevaluation as a positron emission tomography tracer for cerebral and myocardial perfusion.J Nucl Med 31: 1989–1996, 1990.PubMedGoogle Scholar
  5. 5.
    Beanlands RSB, Muzik O, Mintun M, Mangner T, Lee K, Petry N, et al. The kinetics of copper-62-PTSM in the normal human heart.J Nucl Med 33: 684–690, 1992.PubMedGoogle Scholar
  6. 6.
    Herrero P, Markham J, Weinheimer CJ, Anderson CJ, Welch MJ, Green MA, et al. Quantification of regional myocardial perfusion with generator-produced62Cu-PTSM and positron emission tomography.Circulation 87: 173–183, 1993.PubMedGoogle Scholar
  7. 7.
    Okazawa H, Yonekura Y, Fujibayashi Y, Nishizawa S, Magata Y, Ishizu K, et al. Clinical application and quantitative evaluation of generator-produced62Cu-PTSM as a brain perfusion tracer for PET.J Nucl Med 35: 1910–1915, 1994.PubMedGoogle Scholar
  8. 8.
    Mathias CJ, Welch MJ, Raichle ME, Mintun MA, Lich LL, McGuire AH, et al. Evaluation of a potential generatorproduced PET tracer for cerebral perfusion imaging: singlepass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM.J Nucl Med 31: 351–359, 1990.PubMedGoogle Scholar
  9. 9.
    Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Kinetics of copper-PTSM in isolated hearts: a novel tracer for measuring blood flow with positron emission tomography.J Nucl Med 30: 1843–1847, 1989.PubMedGoogle Scholar
  10. 10.
    Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Assessment of regional myocardial and renal blood flow with copper-PTSM and positron emission tomography.Circulation 82: 990–997, 1990.PubMedGoogle Scholar
  11. 11.
    Fujibayashi Y, Matsumoto K, Arano Y, Yonekura Y, Konishi J, Yokoyama A.62Cu-labeling of human serum albumindithiosemicarbazone (HSA-DTS) conjugate for regional plasma volume measurement: application of new62Zn/62Cu generator system.Chem Pharm Bull 38: 1946–1948, 1990.PubMedGoogle Scholar
  12. 12.
    Mathias CJ, Welch MJ, Green MA, Diril H, Meares CF, Gropler RJ, et al.In vivo comparison of copper blood-pool agents: potential radiopharmaceuticals for use with copper-62.J Nucl Med 32: 475–480, 1991.PubMedGoogle Scholar
  13. 13.
    Mathias CJ, Margenau WH, Brodack JW, Welch MJ, Green MA. A remote system for the synthesis of copper-62 labeled Cu(PTSM).Appl Radiat Isot 42: 317–320, 1991.CrossRefGoogle Scholar
  14. 14.
    Fujibayashi Y, Matsumoto K, Yonekura Y, Konishi J, Yokoyama Y. A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals.J Nucl Med 30: 1838–1842, 1989.PubMedGoogle Scholar
  15. 15.
    Zweit J, Goodall R, Cox M, Babich JW, Potter GA, Sharraa HL, et al. Development of a high performance zinc-62/ copper-62 radionuclide generator for positron emission tomography.Eur J Nucl Med 19: 418–425, 1992.CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumoto K, Fujibayashi Y, Yonekura Y, Wada K, Takemura Y, Konishi J, et al. Application of the new zinc-62/copper-62 generator: an effective labeling method for62Cu-PTSM.Nucl Med Biol 19: 39–44, 1992.Google Scholar
  17. 17.
    Petering HG, Buskirl HH, Underwood GE. The antitumor activity of 2-keto-3-ethoxybutyraldehyde bis(thiosemicarbazone) and related compounds.Cancer Res 24: 367–372, 1964.PubMedGoogle Scholar
  18. 18.
    Sadato N, Yonekura Y, Senda M, Iwasaki Y, Matoba N, Tamaki N, et al. PET and the autoradiographic method with continuous inhalation of oxygen-15-gas: theoretical analysis and comparison with conventional steady-state methods.J Nucl Med 34: 1672–1680, 1993.PubMedGoogle Scholar
  19. 19.
    Minkel DT, Saryan LA, Petering DH. Structure-function correlations in the reaction of bis(thiosemicarbazone) copper(II) complexes with ehrlich ascites tumor cells.Cancer Res 38: 124–129, 1978.PubMedGoogle Scholar
  20. 20.
    Takahashi N, Tamaki N, Kawamoto M, Magata Y, Okuda K, Nohara R, et al. Noninvasive and simple method for the estimation of myocardial metabolic rate of glucose by PET and18F-FDG.KAKU IGAKU (Jpn J Nucl Med) 31: 985–990, 1994Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Hidehiko Okazawa
    • 1
  • Yasuhisa Fujibayashi
    • 2
  • Yoshiharu Yonekura
    • 1
  • Nagara Tamaki
    • 1
  • Sadahiko Nishizawa
    • 1
  • Yasuhiro Magata
    • 1
  • Koichi Ishizu
    • 1
  • Tatsuro Tsuchida
    • 1
  • Norihiro Sadato
    • 1
  • Junji Konishi
    • 1
  • Akira Yokoyama
    • 2
  • Ren Iwata
    • 3
  • Tatsuo Ido
    • 3
  1. 1.Faculty of MedicineTohoku UniversityJapan
  2. 2.Faculty of Pharmaceutical SciencesKyoto UniversityJapan
  3. 3.Cyclotron Radioisotope CenterTohoku UniversityJapan

Personalised recommendations