Annals of Nuclear Medicine

, Volume 11, Issue 2, pp 55–66 | Cite as

Recent advances in nuclear cardiology in the study of coronary artery disease

  • Nagara Tamaki
  • Eiji Tadamura
  • Takashi Kudoh
  • Naoya Hattori
  • Masayuki Inubushi
  • Junji Konishi


A variety of new radiopharmaceutical agents have been introduced to probe myocardial functionin vivo. This review will introduce these new techniques which have recently been available in Japan. Tc-99m perfusion imaging agents provide excellent myocardial perfusion images which may enhance diagnostic accuracy in the study of coronary artery disease. In addition, greater photon flux from the tracer permits simultaneous assessment of regional perfusion and function with use of first-pass angiography or ECG-gated acquisition. Positron emission tomography enables metabolic assessmentin vivo. Preserved FDG uptake indicates ischemic but viable myocardium which is likely to improve regional dysfunction after revascularization. In addition, FDG-PET seems to be valuable for selecting a high risk subgroup. Recently I-123 BMIPP, a branched fatty acid analog, has been clinically available in Japan. Less uptake of BMIPP than thallium is often observed in the ischemic myocardium. Such perfusion metabolic mismatch which seems to be similarly observed in FDG-PET is identified in the stunned or hibernating myocardium with regional dysfunction. Both of them are likely to recover afterwards. Severe ischemia is identified as reduced BMIPP uptake at rest, suggesting its role as an ischemic memory imaging. I-123 MIBG uptake in the myocardium reflects adrenergic neuronal functionin vivo. In the study of coronary artery disease, neuronal denervation is often observed around the infarcted myocardium and post ischemic region as well. More importantly, reduced MIBG uptake in these patients can identify high risk for ventricular arrhythmias and assess severity of congestive heart failure. These new techniques will provide insights into new pathological states in the ischemic heart disease and enable to select optimal treatment in these patients.

Key words

emission computed tomography ischemic heart disease myocardial perfusion BMIPP MIBG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey IK, Griffith LSC, Rouleay J, Strauss HW, Pitt B. Thallium-201 myocardial perfusion imaging at rest and during exercise: comparative sensitivity to eletrocardiography in coronary artery disease.Circulation 55: 79–87, 1977.PubMedGoogle Scholar
  2. 2.
    Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after single dose of thallium-201.Circulation 55: 294–302, 1977.PubMedGoogle Scholar
  3. 3.
    Van Train KF, Berman DS, Garcia EV, Berger HJ, Sands MJ, Friedman JD, et al. Quantitative analysis of stress thallium-201 myocardial scintigrams: a multicenter trials.J Nucl Med 27: 17–25, 1986.PubMedGoogle Scholar
  4. 4.
    Jones AG, Abrams MJ, Davidson A, Brodack JW, Toothaker AK. Biological studies of a new class of technetium complexes: the hexakis (alkylisonitrile) technetium (I) cations.Int J Nucl Med Biol 11: 225–234, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Holman BL, Jones AG, Lister-James J, Davidson A, Abrams MJ, Kirshenbaum JM, et al. A new Tc-99m labeled myocardial imaging agent, hexakis (t-butylisonitrile)-technetium (I) (Tc-99m TBI): initial experience in the human.J Nucl Med 25: 1350–1355, 1984.PubMedGoogle Scholar
  6. 6.
    Taillefer R, Laflamme L, Dupras G, Picard M, Phaneuf DC, Leveilie J. Myocardial perfusion imaging with99mTcmethoxy-isobutyl-isonitrile (MIBI): comparison of short and long time intervals between rest and stress injections.Eur J Nucl Med 13: 515–522, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Kahn JK, MciGhie I, Akers MS, Sills MN, Faber TL, Kulkarni PV, et al. Quantitative rotational tomography with201Tl and99mTc 2-methoxy-isobutyl-isonitrile: a direct comparison in normal individuals and patients with coronary artery disease.Circulation 79: 1282–1293, 1989.PubMedGoogle Scholar
  8. 8.
    Wackers FJT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging.J Nucl Med 30: 301–311 1989.PubMedGoogle Scholar
  9. 9.
    Maisey MN, Lowry A, Bischof-Delaloye AB, Fridrich R, Inglese E, Khalil MN, et al. European multi-centre comparison of thallium-201 and technetium-99m methoxyisobutylisonitrile in ischemic heart disease.Eur J Nucl Med 16: 869–872, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Lahiri A, Higley B, Kelly JD, et al. Myocardial perfusion imaging in man using new99mTc functionalised disphophine complexes.EurJ Nucl Med 15: 425, 1989.Google Scholar
  11. 11.
    Higley B, Smith FW, Smith T, Gemmell HG, DasGupta P, Gvozdanovic DV, et al. Technetium-99m-1,2-bis (bis(2-ethoxyethyl)phosphino)ethane: human biodistribution dosimetry and safety of a new myocardial perfusion imaging agent.J Nucl Med 34: 30–38, 1993.PubMedGoogle Scholar
  12. 12.
    Tamaki N, Takahashi N, Kawamoto M, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 35: 594–600, 1994.PubMedGoogle Scholar
  13. 13.
    Rigo P, Leclercq B, Itti R, et al. Technetium-99m-tetrofosmin myocardial imaging: a comparison with thallium-201 and angiography.J Nucl Med 35: 587–593, 1994.PubMedGoogle Scholar
  14. 14.
    Matsunari I, Fujino S, Taki J, et al. Comparison of defect size between thallium-201 and technetium-99m tetrofosmin myocardial single-photon emission computed tomography in patients with single-vessel coronary artery disease.Am J Cardiol 77: 350–354, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Sporn V, Balino NP, Holman BL, Liprandi AS, Masoli O, Mitta A, et al. Simultaneous measurement of ventricular function and myocardial perfusion using the technetium-99m isonitriles.Clin Nucl Med 13: 77–81, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Baillet GY, Mena IG, Kuperus JH, Robertson JM, French WJ. Simultaneous technetium-99m MIBI angiography and myocardial perfusion imaging.J Nucl Med 30: 38–44, 1989.PubMedGoogle Scholar
  17. 17.
    Iskandrian AS, Heo J, Kong B, Lyons E, Marsch S. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging.Am J Cardiol 64: 270–275, 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Borges-Neto S, Coleman RE, Jones RH. Perfusion and function at rest and treadmill exercise using technetium-99m-sestamibi: comparison of one- and two-day protocols in normal volunteers.J Nucl Med 31: 1128–1132, 1990.PubMedGoogle Scholar
  19. 19.
    Villaneva-Meyer J, Mena I, Narahara KA. Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium-99m-methoxy isobutyl isonitrile at stress and rest in patients with angina; comparison with thallium-201 SPECT.J Nucl Med 31: 457–463, 1990.Google Scholar
  20. 20.
    Takahashi N, Tamaki N, Tadamura E, et al. Combined assessment of regional perfusion and wall motion in patients with coronary artery disease with technetium-99m tetrofosmin.J Nucl Cardiol 1: 29–38, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Manning F, Morgan-Manning MG. Gated SPECT with technetium-99m-sestamibi for assessment of myocardial perfusion abnormalities.J Nucl Med 34: 601–608, 1993.Google Scholar
  22. 22.
    Cook CD, Garcia EV, Cullom SJ, et al. Determinating the accuracy of calculation systolic wall thickening using a Fourier transform approximation: a simulation study based on canine and patient data.J Nucl Med 35: 1185–1192, 1994.Google Scholar
  23. 23.
    Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images.J Am Coll Cardiol 27: 173–181, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Anagnostopoulos C, Gunning MG, Pannell DJ, et al. Regional myocardial motion and thickening assessed at rest by ECG-gated99mTc-MIBI emission tomography and by magnetic resonance imaging.Eur J Nucl Med 23: 909–916, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Pierard LC, DeLandsheere CM, Berthe C, et al. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography.J Am Coll Cardiol 15: 1021–1031, 1990.PubMedGoogle Scholar
  26. 26.
    Cohn JN, Rector TS. Prognosis of congestive heart failure and predictors of mortality.Am J Cardiol 62: 25A-30A, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee KL, Pryor DB, Pieper KS, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease: a comparison with clinical and catheterization variables.Circulation 82: 1705–1717, 1990.PubMedGoogle Scholar
  28. 28.
    Iskandrian AS, Hakki AH, Kane-Marsch S. Prognostic implications of exercise thallium-201 scintigraphy in patients with suspected or known coronary artery disease.Am Heart J 110: 135–143, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaul S, Lilly DR, Gascho GA, et al. Prognostic utility of the exercise thallium-201 test in ambulatory patients with chest pain: comparison with cardiac catheterization.Circulation 77: 745–758, 1988.PubMedGoogle Scholar
  30. 30.
    Palmas W, Friedman JD, Diamond GA, et al. Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease.J Am Coll Cardiol 25: 1024–1031, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Nallamouthu N, Araujo L, Russell J, et al. Prognostic value of simultaneous perfusion and function assessment using Technetium-99m sestamibi.Am J Cardiol 76: 562–564, 1996.CrossRefGoogle Scholar
  32. 32.
    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction.Circulation 66: 1146–1149, 1982.PubMedGoogle Scholar
  33. 33.
    Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic technetium-99m-hexakis-2-methoxy-2-methylisopropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of acute treatment in myocardial infarction.Circulation 80: 1277–1286, 1989.PubMedGoogle Scholar
  34. 34.
    Wackers FJ, Verani MS, Behrenbeck T, et al. Serial quantitative planar technetium-99m-isonitrile imaging in acute myocardial infarction: efficacy for noninvasive assessment of thrombolytic therapy.J Am Coll Cardiol 14: 861–873, 1989.PubMedCrossRefGoogle Scholar
  35. 35.
    Sinusas AJ, Trautman KA, Bergin JD, et al. Qunatification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m-methoxy isobutyl isonitrile.Circulation 82: 1424–1437, 1990.PubMedGoogle Scholar
  36. 36.
    Rocco TP, Dilsizian V, Strauss HW, et al. Technetium-99m isonitrile myocardial uptake at rest. II. Relation to clincial markers of potential viability.J Am Coll Cardiol 14: 1678–1684, 1989.PubMedGoogle Scholar
  37. 37.
    Medrano R, Lowry RW, Young JB, et al. Assessment of myocardial viability with99mTc-sestamibi in patient undergoing cardiac transplantation.Circulation 94: 1010–1017, 1996.PubMedGoogle Scholar
  38. 38.
    Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of99mTc-tetrofosmin, sestamibi and201Tl in a model of acute coronary reperfusion.Circulation 94: 2605–2613, 1996.PubMedGoogle Scholar
  39. 39.
    Udelson JE, Coleman PS, Metherall J, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with201Tl and99mTc-sestamibi.Circulation 89: 2552–2561, 1994.PubMedGoogle Scholar
  40. 40.
    Altefoefer C, Kaiser HJ, Dorr R, et al. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in99mTc-MIBI SPET: a comparative study in patients with coronary artery disease.Eur J Nucl Med 19: 334–342, 1992.Google Scholar
  41. 41.
    Sawada SG, Allman KC, Muzik O, et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects.J Am Coll Cardiol 23: 92–98, 1994.PubMedCrossRefGoogle Scholar
  42. 42.
    Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease: comparison of99mTc-sestamibi with thallium reinjection and18F-fluorodeoxyglucose.Circulation 89: 578–587, 1994.PubMedGoogle Scholar
  43. 43.
    Phelps M, Hoffman E, Selin C, et al. Investigation of18F-2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism.J Nucl Med 19: 1311–1319, 1978.PubMedGoogle Scholar
  44. 44.
    Neely JR, Rovetto M, Oram J. Myocardial utilization of carbohydrate and lipids.Prog Cardiovasc Dis 15: 289–329, 1972.PubMedCrossRefGoogle Scholar
  45. 45.
    Liedke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart.Prog Cardiovasc Dis 23: 321–336, 1981.CrossRefGoogle Scholar
  46. 46.
    Camici P, Ferrannini E, Opie L. Myocardial metabliosm in ischemic heart disease; basic principles and application to imaging by positron emission tomography.Prog Cardiovasc Dis 32: 217–238, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography,18Flabeled fluorodeoxyglucose and N-13 ammonia.Circulation 67: 766–778, 1983.PubMedGoogle Scholar
  48. 48.
    Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography.N Eng J Med 314: 884–888, 1986.CrossRefGoogle Scholar
  49. 49.
    Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting.Am J Cardiol 64: 860–865, 1989.PubMedCrossRefGoogle Scholar
  50. 50.
    Marwick T, Maclntyre W, LaFont A, et al. Metabolic responses of hibernating and infarcted myocardium to revascularization: a follow-up study of regional perfusion, function, and metabolism.Circulation 85: 1347–1353, 1992.PubMedGoogle Scholar
  51. 51.
    Lucignani G, Paolioni G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methylisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease.Eur J Nucl Med 19: 874–881, 1992.PubMedCrossRefGoogle Scholar
  52. 52.
    Tamaki N, Kawamoto M, Tadamura E, et al. Prediction of reversible ischemia after revascularization: perfusion and metabolic studies with positron emission tomography.Circulation 91: 1697–1705, 1995.PubMedGoogle Scholar
  53. 53.
    Brunken R, Tillisch J, Schwaiger M, et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography.Circulation 73: 951–963, 1986.PubMedGoogle Scholar
  54. 54.
    Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Hashimoto T, et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction.Am J Cardiol 62: 202–208, 1988.PubMedCrossRefGoogle Scholar
  55. 55.
    Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects.JACC 10: 557–567, 1987.PubMedGoogle Scholar
  56. 56.
    Brunken R, Kottou S, Nienaber CA, Schwaiger M, Ratib OM, Phelps ME, et al. PET detection of viable tissue in myocardial segments with persistent defect at Tl-201 SPECT.Radiology 65: 65–73, 1989.Google Scholar
  57. 57.
    Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with18F-fluorodeoxyglucose.Circulation 83: 26–37, 1991.PubMedGoogle Scholar
  58. 58.
    Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R, et al. Metabolic activity in the areas of new-fillin after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose.J Nucl Med 32: 673–678, 1991.PubMedGoogle Scholar
  59. 59.
    Eitzman D, Al-Aouar Z, Kanter HL, von Dahl J, Kirsh M, Deeb GM, et al. Clinical outcome in patients with advanced coronary artery disease after viability studies with positron emission tomography.J Am Coll Cardiol 20: 559–565, 1992.PubMedCrossRefGoogle Scholar
  60. 60.
    Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging.J Am Coll Cardiol 22: 1621–1627, 1993.PubMedCrossRefGoogle Scholar
  61. 61.
    Di Carli M, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and ventricular dysfunction.Am J Cardiol 73: 527–533, 1994.PubMedCrossRefGoogle Scholar
  62. 62.
    Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial utilization with carbon-11-labeled acetate.Circulation 76: 687–696, 1987.PubMedGoogle Scholar
  63. 63.
    Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert MR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux.Cir Res 63: 628–634, 1988.Google Scholar
  64. 64.
    Tamaki N, Magata Y, Takahashi N, Kawamoto M, Torizuka T, Yonekura Y, et al. Myocardial oxidative metabolism in normal subjects in fasting, glucose loading and dobutamine infusion states.Ann Nucl Med 6: 221–228, 1992.PubMedCrossRefGoogle Scholar
  65. 65.
    Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism.J Am Coll Cardiol 20: 69–77, 1992.CrossRefGoogle Scholar
  66. 66.
    Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery myocardial oxidative metabolism.Am Heart J 125: 939–949, 1993.PubMedCrossRefGoogle Scholar
  67. 67.
    Hata T, Nohara R, Tamaki N, et al. Noninvasive assessment of myocardial viability by positron emission tomography with11C-acetate in patients with old myocardial infarction.Circulation 94: 1834–1841, 1996.PubMedGoogle Scholar
  68. 68.
    Weiss ES, Hoffman EJ, Phelps ME, Welch MJ, Henry PD, Ter-Pogossian MM, et al. External detection and visualization of myocardial ischemia with C-11 substratesin vivo andin vitro.Circ Res 39: 24–32, 1976.PubMedGoogle Scholar
  69. 69.
    Sobel BE, Weiss ES, Welch MJ, Siegel BA, Ter-Pogosian MM. Detection of remote myocardial infarction in patients with positron transaxial tomography and intravenous C-11 palmitate.Circulation 55: 853–857, 1977.PubMedGoogle Scholar
  70. 70.
    Schon HR, Schelbert HR, Robinson G, Najafi A, Huang SC, Hansen H, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium.Am Heart J 103: 532–547, 1982.PubMedCrossRefGoogle Scholar
  71. 71.
    Schon HR, Schelbert HR, Nahaji A, Hansen H, Huang H, Barrio J, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium.Am Heart J 103: 548–561, 1982.PubMedCrossRefGoogle Scholar
  72. 72.
    Tamaki N, Fujibayashi Y, Magata Y, et al. Radionuclide assessment of myocardial fatty acid metabolism by PET and SPECT.J Nucl Cardiol 2: 256–266, 1995.PubMedCrossRefGoogle Scholar
  73. 73.
    Otto CA, Brown LE, Scott AM. Radioiodinated branchchain fatty acids: substrates for beta oxidation?J Nucl Med 25: 75–80, 1984.PubMedGoogle Scholar
  74. 74.
    Knapp FF, Kropp J. Iodine-123-labeled fatty acids for myocardial single-photon emission tomography.Eur J Nucl Med 22: 361–381, 1995.PubMedCrossRefGoogle Scholar
  75. 75.
    Knapp FF, Goodman MM, Kirsch G, et al. Both total chain length and position of dimethyl-branching effect the myocardial uptake and retention of radioiodinated analogues of 15-(p-iodophenyl)-3,3-dimethyl pentadecanoic acid (DMIPP).Ann Nucl Med 10: 19–32, 1996.PubMedGoogle Scholar
  76. 76.
    Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat heart of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents.Eur J Nucl Med 12: 486–491, 1987.PubMedCrossRefGoogle Scholar
  77. 77.
    Nohara R, Okuda K, Ogino M, et al. Evaluation of myocardial viability with iodine-123-BMIPP in a canine model.J Nucl Med 37: 1403–1407, 1996.PubMedGoogle Scholar
  78. 78.
    Fujibayashi Y, Yonekura Y, Takemura Y, et al. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration.J Nucl Med 31: 1818–1822, 1990.PubMedGoogle Scholar
  79. 79.
    Miller DD, Gill JB, Elmaleh D, Aretz T, Boucher CA, Strauss HW. Fatty acid analogue accumulation: a marker of myocyte viability in ischemic-reperfused myocardium.Circ Res 63: 681–692, 1988.PubMedGoogle Scholar
  80. 80.
    Nishimura T, Sago M, Kihara K, et al. Fatty acid myocardial imaging using123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model).Eur J Nucl Med 15: 341–345, 1989.PubMedCrossRefGoogle Scholar
  81. 81.
    Kawamoto M, Tamaki N, Yonekura Y, Magata Y, Tadamura E, Nohara R, et al. Significance of myocardial uptake of I-123 beta-methyl iodophenyl pentadecanoic acid: comparison with kinetics of C-11 palmitate.J Nucl Cardiol 1: 522–528, 1994.PubMedCrossRefGoogle Scholar
  82. 82.
    Tamaki N, Kawamoto M. The use of iodinated free fatty acids for assessing fatty acid metabolism.J Nucl Cardiol 1: S72–78, 1994.PubMedCrossRefGoogle Scholar
  83. 83.
    Tamaki N, Tadamura E, Kawamoto M, et al. Decreased uptake of iodinated branched fatty acid analogue indicates metabolic alterations in ischemic myocardium.J Nucl Med 36: 1974–1980, 1995.PubMedGoogle Scholar
  84. 84.
    Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodinated branched fatty acid.J Nucl Med 33: 659–667, 1992.PubMedGoogle Scholar
  85. 85.
    Kawamoto M, Tamaki N, Yonekura Y, Tadamura E, Fujibayashi Y, Magata Y, et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium.Ann Nucl Med 8: 47–54, 1994.PubMedCrossRefGoogle Scholar
  86. 86.
    Matsunari I, Saga T, Taki J, et al. Kinetics of iodine-123-BMIPP in patients with prior myocardial infarction: assessment with dynamic rest and stress images compared with stress thallium-201 SPECT.J Nucl Med 35: 1279–1285, 1994.PubMedGoogle Scholar
  87. 87.
    Tawarahara K, Kurata C, Taguchi T, et al. Simultaneous dual myocardial imaging with iodine-123-β-methyl iodophenyl-pentadecanoic acid (BMIPP) and thallium-201 in patients with coronary artery disease.Jpn Circ J 58: 107–115, 1994.PubMedGoogle Scholar
  88. 88.
    Ito T, Tanouchi J, Kato J, et al. Recovery of impaired left ventricular function in patients with acute myocardial infarction is predicted by the discordance on defect size on123I-BMIPP and201Tl-SPET images.Eur J Nucl Med 23: 917–923, 1996.PubMedCrossRefGoogle Scholar
  89. 89.
    Hashimoto A, Nakata T, Tsuchihashi K, et al. Postischemic functional recovery and BMIPP uptake after pulmonary percutaneous transluminal coronary angioplasty in acute myocardial infarction.Am J Cardiol 77: 25–30, 1996.PubMedCrossRefGoogle Scholar
  90. 90.
    Matsunari I, Saga T, Taki J, et al. Improved myocardial fatty acid utilization after percutaneous transluminal coronary angioplasty.J Nucl Med 36: 1605–1607, 1995.PubMedGoogle Scholar
  91. 91.
    De Geeter F, Franken PR, Bossuyt A. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: a study means of99mTc-sestamibi and123I-β-methyl-iodophenyl pentadecanoic acid.Eur J Nucl Med 21: 283–291, 1994.PubMedCrossRefGoogle Scholar
  92. 92.
    Franken PR, De Geeter F, Dendale P, et al. Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve.J Nucl Med 35: 1758–1765, 1994.PubMedGoogle Scholar
  93. 93.
    Franken PR, Dendale P, De Geeter F, et al. Prediction of functional outcome after myocardial infraction using BMIPP and sestamibi scintigraphy.J Nucl Med 37: 718–722, 1996.PubMedGoogle Scholar
  94. 94.
    Schwaiger M, Scheibert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemic in the chronic dog model.J Am Coll Cardiol 6: 336–347, 1985.PubMedCrossRefGoogle Scholar
  95. 95.
    Matsunari I, Saga T, Taki J, et al. Relationship between various parameters derived from123I-lalebed beta-methylbranched fatty acid whole-body scintigraphy and left ventricular ejection fraction in patients with ischaemic heart disease.Nucl Med Commun 15: 685–689, 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    Takeishi Y, Atsumi H, Fujiwara S, et al. Fatty acid metabolic imaging with123I-BMIPP for the diagnosis of coronary artery disease.Nucl Med Commun 17: 675–680, 1996.PubMedCrossRefGoogle Scholar
  97. 97.
    Taki J, Nakajima K, Matsunari I, et al. Impairment of regional fatty acid uptake in relation to wall motion and thallium-201 uptake in ischaemic but viable myocardium.Eur J Nucl Med 22: 1385–1392, 1995.PubMedCrossRefGoogle Scholar
  98. 98.
    Fukuzawa S, Inagaki M, Morooka S, et al. An effective tool to detect lesions causing unstable angina with multivessel disease.J Cardiol 28: 191–198, 1996.PubMedGoogle Scholar
  99. 99.
    Mori T, Hayakawa M, Hattori K, et al. Exercise β-methyl iodophenyl pentadecanoic acid (BMIPP) and resting thallium delayed single-photon emission computed tomography (SPECT) in the assessment of ischemia and viability.Jpn Circ J 60: 17–26, 1996.PubMedCrossRefGoogle Scholar
  100. 100.
    Tamaki N, Tadamura E, Kudoh T, et al. Prognostic value of iodine-123 labelled BMIPP fatty acid analogues imaging in patients with myocardial infarction.Eur J Nucl Med 23: 272–279, 1996.PubMedCrossRefGoogle Scholar
  101. 101.
    Bristow M, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing heart.N Engl J Med 307: 205–207, 1982.PubMedGoogle Scholar
  102. 102.
    Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic.Circulation 75: 877–887, 1987.PubMedGoogle Scholar
  103. 103.
    Shore PA, Cohn VH, Highman B, Maling H. Distribution of norepinephrine in the heart.Nature 181: 848–849, 1958.PubMedCrossRefGoogle Scholar
  104. 104.
    Randall W, Armour JA, Geis P, Lippencott D. Regional cardiac distribution of sympathetic nerves.Federation Proc 31: 199–208, 1972.Google Scholar
  105. 105.
    Wieland DM, Wu J-I, Brown LE, et al. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with (1–131) iodobenzyl-guanidine.J Nucl Med 21: 349–353, 1980.PubMedGoogle Scholar
  106. 106.
    Nakajo M, Shapiro B, Copp J, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy.J Nucl Med 24: 672–682, 1983.PubMedGoogle Scholar
  107. 107.
    Kline RC, Swanson DP, Wieland DM, et al. Myocardial imaging in man with I-123 metaiodobenzylguanidine.J Nucl Med 22: 129–132, 1981.PubMedGoogle Scholar
  108. 108.
    Sisson JC, Shapiro B, Meyers L, et al. Meta-iodobenzylguanidine to map scintigraphically the adrenergic nervous system in man.J Nucl Med 28: 1625–1636, 1987.PubMedGoogle Scholar
  109. 109.
    Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation:in vivo demonstration by iodine-123-labeled metaiodobenzylguanidine scintigraphy.Am Heart J 126: 390–398, 1993.PubMedCrossRefGoogle Scholar
  110. 110.
    Tsuchimochi S, Tamaki N, Tadamura E, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging.J Nucl Med 36: 969–914, 1995.PubMedGoogle Scholar
  111. 111.
    Barber MJ, Mueller TM, Henry DP, et al. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium.Circulation 67: 787–796, 1983.PubMedGoogle Scholar
  112. 112.
    Dae MW, Herre JM, O’Connell JW, et al. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction.J Am Coll Cardiol 17: 1416–1423, 1991.PubMedCrossRefGoogle Scholar
  113. 113.
    Stanton MS, Mahmoud MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine.J Am Coll Cardiol 14: 1519–1526, 1989.PubMedCrossRefGoogle Scholar
  114. 114.
    McGhie AI, Corbett JR, Akers MS, et al. Regional cardiac adrenergic function using I-123-meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction.Am J Cardiol 67: 236–242, 1991.PubMedCrossRefGoogle Scholar
  115. 115.
    Glowniak JV, Turner FE, Gray LL, et al. Iodine-123 metaiodobenzylguanidine imaging of the heart with idiopathic congestive cardiomyopathy and cardiac transplants.J Nucl Med 30: 1182–1191, 1989.PubMedGoogle Scholar
  116. 116.
    Schofer J, Spielmann R, Schuchert A, et al. Iodine-123 metaiodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy.J Am Coll Cardiol 12: 1252–1258, 1988.PubMedCrossRefGoogle Scholar
  117. 117.
    Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy.Circulation 78: 1192–1199, 1988.PubMedGoogle Scholar
  118. 118.
    Nakajima K, Bunko H, Taki J, et al. Quantitative analysis of123I-meta-iodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy.Am Heart J 119: 1329–1337, 1990.PubMedCrossRefGoogle Scholar
  119. 119.
    Taki J, Nakajima K, Bunko H, et al. Whole-body distribution of iodine 123-metaiodobenzylguanidine in hypertrophic cardiomyopathy: significance of its washout from the heart.Eur J Nucl Med 17: 264–268, 1990.PubMedCrossRefGoogle Scholar
  120. 120.
    Hattori N, Tamaki N, Hayashi T, et al. I-123-Metaiodobenzylguanidine (MIBG) to assess cardiac denervation in diabetic patients: value of regional distribution index.J Nucl Med 37: 1985–1990, 1996.PubMedGoogle Scholar
  121. 121.
    Gohl K, Feistei H, Weikl A, et al. Congenital myocardial sympathetic dysinnervation (CMSD)—a structural defect of idiopathic long QT syndrome.PACE 14: 1544–1553, 1991.PubMedGoogle Scholar
  122. 122.
    Wichter T, Hindricks G, Lerch H, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy.Circulation 89: 667–683, 1994.PubMedGoogle Scholar
  123. 123.
    Herre JM, Westein L, Lin YL, et al. Effect of transmural versus nontransmural myocardial infarction on inducibility of ventricular arrhythmias during sympathetic stimulation in dogs.J Am Coll Cardiol 2: 413–421, 1988.Google Scholar
  124. 124.
    Tomoda H, Yoshioka K, Shiina Y, et al. Regional sympathetic denervation detected by iodine 123 metaiodobenzylguanidine in non-Q-wave myocardial infarction and unstable angina.Am Heart J 128: 452–458, 1994.PubMedCrossRefGoogle Scholar
  125. 125.
    Nishimura T, Oka H, Sago M, et al. Serial assessment of denervated but viable myocardium following acute myocardial infarction in dogs using iodine-123 metaiodobenzylguanidine and thallium-201 chloride myocardial single photon emission tomography.Eur J Nucl Med 19: 25–29, 1992.PubMedCrossRefGoogle Scholar
  126. 126.
    Holmgren S, Abrahamson T, Almgren O. Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: fluorescence microscopic appearance in the normal state and after ischemia.Basic Res Cardiol 80: 18–26, 1985.PubMedCrossRefGoogle Scholar
  127. 127.
    Mathes P, Cowan C, Gudbjanason S. Storage and metabolism of norepinephrine after experimental myocardial infarction.Am J Physiol 220: 27–32, 1971.PubMedGoogle Scholar
  128. 128.
    Nohara R, Kambara H, Tamaki N, et al. Effect of cardiac sympathetic nervous system on the stunned myocardium: experimental study with123I-metaiodobenzylguanidine.Jpn Circulation J 55: 893–899, 1991.Google Scholar
  129. 129.
    Takano H, Nakamura T, Satou T, et al. Regional myocardial sympathetic dysinnervation in patients with coronary vasospasm.Am J Cardiol 75: 324–239, 1995.PubMedCrossRefGoogle Scholar
  130. 130.
    Tsutsui H, Ando S, Fukai T, et al. Detection of anginaprovoking coronary stenosis by resting iodine-123 metaiodobenzylguanidine scintigraphy in patients with unstable angina.Am Heart J 129: 708–715, 1995.PubMedCrossRefGoogle Scholar
  131. 131.
    Mitrani RD, Klein LS, Miles WM, et al. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease.J Am Coll Cardiol 22: 1344–1353, 1993.PubMedCrossRefGoogle Scholar
  132. 132.
    Rabinovitch MA, Rose CP, Rouleau JL, et al. Metaiodobenzylguanidine [123I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure.Cir Res 61: 797–804, 1987.Google Scholar
  133. 133.
    Rabinovitch MA, Rose CP, Schwab AJ, et al. A method of dynamic analysis of iodine-123-metaiodobenzylguanidine scintigrams in cardiac mechanical overload hypertrophy and failure.J Nucl Med 34: 589–600, 1993.PubMedGoogle Scholar
  134. 134.
    Bohm M, LaRosee K, Schwinger RHG, et al. Evidence for reduction of norepinephrine uptake sites in the failing human heart.JAm Coll Cardiol 25: 146–153, 1995.CrossRefGoogle Scholar
  135. 135.
    Merlet P, Valette H, Dubois-Rande J-L, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure.J Nucl Med 33: 471–477, 1992.PubMedGoogle Scholar
  136. 136.
    Takatsu H, Uno Y, Fujiwara H. Modulation of left ventricular iodine-125-MIBG accumulation in cardiomyopathic Syrian hamster using the renin-angiotensin system.J Nucl Med 36: 1055–1061, 1995.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Nagara Tamaki
    • 1
  • Eiji Tadamura
    • 2
  • Takashi Kudoh
    • 2
  • Naoya Hattori
    • 2
  • Masayuki Inubushi
    • 2
  • Junji Konishi
    • 2
  1. 1.Department of Nuclear MedicineHokkaido University School of MedicineSapporoJapan
  2. 2.Department of Nuclear MedicineKyoto University Faculty of MedicineJapan

Personalised recommendations