Annals of Nuclear Medicine

, Volume 10, Issue 4, pp 409–417 | Cite as

Abdominal SPECT/MRI fusion applied to the study of splenic and hepatic uptake of radiolabeled thrombocytes and colloids

  • Hanna K. Pohjonen
  • Sauli E. Savolainen
  • Päivi H. Nikkinen
  • Veli-Pekka O. Poutanen
  • E. Tapani Korppi-Tommola
  • B. Kristian Liewendahl
Original Article


The importance of applying MRI (CT)/SPECT fusion in the abdominal and thoracic areas has been recognized in recent studies aiming at radionuclide therapy of cancer. According to our earlier results spleen and liver volume determination with different segmentation methods is inaccurate with SPECT alone. We therefore applied a SPECT/MRI registration procedure to the estimation of spleen and liver volumes and spleen/liver activity ratios in three male volunteers administered111In-labeled thrombocytes and99mTc-labeled colloids. The objectives of the study were to investigate if the uptake of thrombocytes in the spleen and liver can be measured more accurately when the anatomical borders of these organs are transferred from MRI to SPECT, and to test a SPECT/MRI registration method for improving three-dimensional dosimetry for radiotherapy treatment planning. A good correlation was found between spleen/liver activity ratios calculated from volumetric average activity per pixel values and from total volumetric counts derived from registered data but not from projection data. The average registration residual with this SPECT/MRI fusion method is approximately 1–2 cm in the abdominal area. Combining anatomical images with SPECT is therefore important for improving quantitative SPECT also in the abdomen.

Key words

abdominal fusion imaging registration SPECT MRI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohm C, Creitz T, Kingsley D, Berggren BM, Olsson L. Adjustable computerized stereotaxic brain atlas for transmission and emission tomography.Am J Neuroradiol 4: 731–733, 1983.PubMedGoogle Scholar
  2. 2.
    Hawkes DJ, Hill DLG, Lehmann ED, Robinson GP, Maisey MN, Colchester ACF. Preliminary work on the interpretation of SPECT images with the aid of registered MR images and an MR derived 3D neuro-anatomical atlas.In NATO ASI Series, 3D imaging in medicine, KH Hohne, et al. (eds.), Berlin, Heidelberg, New York, Springer-Verlag, pp. 241–251, 1990.Google Scholar
  3. 3.
    Bergström M, Boëthius J, Eriksson L, Greitz T, Ribbe T, Widén L. Head fixation device for reproducible position alignment in transmission CT and positron emission tomography.J Comp Ass Tomog 5: 136–141, 1981.CrossRefGoogle Scholar
  4. 4.
    Fox FT, Perlmutter JS, Raichle ME. A stereotactic method of anatomical localization for positron emission tomography.J Comp Ass Tomog 9: 141–153, 1985.CrossRefGoogle Scholar
  5. 5.
    Mazziotta JC, Phelps ME, Meadors AK, Ricci A, Winter J, Bentson JR. Anatomical localization schemes for use in positron computed tomography using a specially designed headholder.J Comp Ass Tomog 6: 848–853, 1982.Google Scholar
  6. 6.
    Miura S, Kanno I, Iida H, et al. Anatomical adjustments in brain positron emission tomography using CT images.J Comp Ass Tomog 12: 363–367, 1988.CrossRefGoogle Scholar
  7. 7.
    Pelizzari CA, Chen GTY, Speibring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain.J Comp Ass Tomog 13: 20–26, 1989.Google Scholar
  8. 8.
    Schiers C, Tiede U, Höhne KH. Interactive 3D registration of image volumes from different sources.In Proceedings of CAR’89 Computer Assisted Radiology, Lemke HU, Rhodes ML, Jaffe CC, Felix R (eds.), Berlin, Springer-Verlag, pp. 666–670, 1989.Google Scholar
  9. 9.
    Hill DLG, Hawkes DJ, Crossman JE, et al. Registration of MR and CT images for skull base surgery using point-like anatomical features.Brit J Radiol 64: 1030–1035, 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Spetsieris PG, Dhawan V, Takikawa S, Margouleff D, Eidelberg D. Imaging cerebral function.IEEE Comput Graph Appl 13: 15–26, 1993.CrossRefGoogle Scholar
  11. 11.
    Pohjonen H, Nikkinen P, Sipilä O, et al. Registration and display of brain SPECT and MRI using external markers.Neuroradiology 38: 108–114, 1996.PubMedCrossRefGoogle Scholar
  12. 12.
    Sgouros G, Chiu S, Pentlow KS, et al. Three-dimensional dosimetry for radioimmunotherapy treatment planning.J Nucl Med 34: 1595–1601, 1993.PubMedGoogle Scholar
  13. 13.
    Kramer E, Noz ME, Sanger JJ, Megibow AJ, Maguire GQ. CT-SPECT fusion to correlate radiolabeled monoclonal antibody uptake with abdominal CT findings.Radiology 172: 861–865, 1989.PubMedGoogle Scholar
  14. 14.
    Birnbaum BA, Noz ME, Chapnick J, et al. Hepatic hemangiomas: diagnosis with fusion of MR, CT, and Tc-99m-labeled red blood cell SPECT images.Radiology 181: 469–474, 1991.PubMedGoogle Scholar
  15. 15.
    Koral KF, Zasadny KR, Kessler ML, et al. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients.J Nucl Med 35: 1714–1720, 1994.PubMedGoogle Scholar
  16. 16.
    Tjuvajev JG, Homer AM, Daghighian F, et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine.J Nucl Med 35: 1407–1417, 1994.PubMedGoogle Scholar
  17. 17.
    Strand S-E, Zanzonico P, Johnson TK. Pharmacokinetic modeling.Med Phys 20: 515–527, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Leichner PK, Koral KF, Jaszczak RJ, Green AJ, Chen GTY, Roeske JC. An overview of imaging techniques and physical aspects of treatment planning in radioimmunotherapy.Med Phys 20 (2): 569–578, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Syrjälä MT, Savolainen S, Nieminen U, Gripenberg J, Liewendahl K, Ikkala E. Splenic dynamics of indium-111 labeled platelets in idiopathic thrombocytopenic purpura.J Nucl Med 30: 1546–1549, 1989.PubMedGoogle Scholar
  20. 20.
    Siegel RS, Rae JL, Barth S, et al. Platelet survival and turnover: important factors in predicting response to splenectomy in immune thrombocytopenic purpura.Am J Hematol 30: 206–212, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Najean Y, Ardaillou N. The sequestration site of platelets in idiopathic thrombocytopenic purpura: its correlation with the results of splenectomy.Br J Haematol 21: 153–164, 1971.PubMedCrossRefGoogle Scholar
  22. 22.
    Stratton JR, Ballem PJ, Gernsheimer T, Cerqueira M, Slichter SJ. Platelet destruction in autoimmune thrombocytopenic purpura: kinetics and clearance of111In-labelled autologous platelets.J Nucl Med 30: 620–637, 1989.Google Scholar
  23. 23.
    Savolainen S, Liewendahl K, Syrjälä MT, Gripenberg J. Platelet splenic transit times in idiopathic thrombocytopenic purpura: Compartmental vs. non-compartmental model.Int J Hematol 55: 81–87, 1992.PubMedGoogle Scholar
  24. 24.
    Savolainen S. SPECT versus planar scintigraphy for quantification of splenic sequestration of111In-labelled platelets.Nucl Med Commun 13: 757–763, 1992.PubMedGoogle Scholar
  25. 25.
    Savolainen S, Pohjonen H, Sipilä O, Liewendahl K. Segmentation methods for volume determination with111In/99Tcm SPET.Nucl Med Commun 16: 370–377, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Larsson SA. Gamma camera emission tomography.Acta Radiol Suppl. No. 363, 1980.Google Scholar
  27. 27.
    Picker Nuclear Medical Imaging Systems. Odyssey VP Operator’s guide, Ohio, Picker International, Inc., Ohio Imaging Division, Bedford Heights, 1995.Google Scholar
  28. 28.
    Arun KS, Huang TS, Biostein SD: Least-squares fitting of two 3-D point sets.IEEE Trans Patt Anal Mach Intell PAMI-9: 698–700, 1987.CrossRefGoogle Scholar
  29. 29.
    van Reenen O, Lötter MG, Heyns A du P, et al. Quantification of the distribution of111In-labelled platelets in organs.Eur J Nucl Med 7: 80–84, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Chandler ST. A comparison of liver-spleen ratios and uptakes obtained using planar and tomographic techniques.Nucl Med Commun 10: 297–307, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Long DT, King MA, Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT.Med Phys 19 (2): 483–489, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Savolainen SE, Liewendahl BK. Analysis of scintigrams by singular value decomposition (SVD) technique.Ann Nucl Med 8 (2): 101–108, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia.J Clin Invest 45: 645–657, 1966.PubMedCrossRefGoogle Scholar
  34. 34.
    Kernoff LM, Blake KCH, Shackleton D. Influence of the amount of platelet-bound IgG on platelet survival and site of sequestration in autoimmune thrombocytopenia.Blood 55: 730–733, 1980.PubMedGoogle Scholar
  35. 35.
    Mueller-Eckhardt C, Mueller-Eckhardt G, Kayser W, Voss RM, Wagner J, Kuenzelen E. Platelet associated IgG, platelet survival, and platelet sequestration in thrombocytopenic states.Br J Haematol 52: 49–58, 1982.PubMedCrossRefGoogle Scholar
  36. 36.
    Peters AM, Lavender JP. Factors controlling the intrasplenic transit of platelets.Eur J Clin Invest 12: 191–195, 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Luikens B, Forstrom LA, Johnson T, Johnson G. Indium-111 platelet kinetics in patients with diabetes mellitus.Nucl Med Commun 9: 223–234, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Fleming JS. A technique for the absolute measurement of activity using a gamma camera and computer.Phys Med Biol 24: 176–180, 1979.PubMedCrossRefGoogle Scholar
  39. 39.
    Strauss LG, Clorius JH, Frank T, van Kaick G. Single photon emission computerized tomography (SPECT) for estimates of liver and spleen volume.J Nucl Med 25: 81–85, 1984.PubMedGoogle Scholar
  40. 40.
    van Rensburg AJ, Lötter MG, Heyns A du P, Minnaar PC. An evaluation of four methods of111In planar image quantification.Med Phys 15: 853–861, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography.Med Phys 17: 1011–1022, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Ljungberg M. Development and evaluation of attenuation and scatter correction techniques for SPECT using the Monte Carlo method. Doctoral Dissertation, Department of Radiation Physics, University of Lund, Klippan, Sweden, Ljungbergs Tryckeri AB, 1990.Google Scholar
  43. 43.
    Harris CC, Greer KL, Jaszczak RJ, Floyd CE Jr, Fearnow EC, Coleman RE. Tc-99m attenuation coefficient in waterfilled phantoms determined with gamma cameras.Med Phys 11: 681–685, 1984.PubMedCrossRefGoogle Scholar
  44. 44.
    Sipilä O, Nikkinen P, Pohjonen H, Poutanen V-P, Karp P, Liewendahl K. Evaluation of registration error in 99mTc-HM-PAO brain SPET and MRI.In European Association of Nuclear Medicine Congress, Brussels, Belgium, 1995.Eur J Nucl Med 22: 767 (Abstract 169), 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Hanna K. Pohjonen
    • 1
  • Sauli E. Savolainen
    • 2
    • 3
    • 4
  • Päivi H. Nikkinen
    • 3
  • Veli-Pekka O. Poutanen
    • 4
  • E. Tapani Korppi-Tommola
    • 4
  • B. Kristian Liewendahl
    • 3
  1. 1.Medical Engineering CentreHelsinki University Central HospitalHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiFinland
  3. 3.Laboratory Department, Division of Nuclear MedicineHelsinki University Central HospitalFinland
  4. 4.Department of RadiologyHelsinki University Central HospitalFinland

Personalised recommendations