Advertisement

Annals of Nuclear Medicine

, Volume 6, Issue 4, pp 221–228 | Cite as

Myocardial oxidative metabolism in normal subjects in fasting, glucose loading and dobutamine infusion states

  • Nagara Tamaki
  • Yasuhiro Magata
  • Norio Takahashi
  • Masahide Kawamoto
  • Tatsuo Torizuka
  • Yoshiharu Yonekura
  • Sadahiko Nishizawa
  • Norihiro Sadato
  • Eiji Tadamura
  • Shinji Ono
  • Ryuji Nohara
  • Hirofumi Kambara
  • Junji Konishi
Original Article

Abstract

Experimental studies indicated the clearance rate constant of11C-acetate as an index of regional myocardial oxygen consumption. To assess the response of the clearance rate from the left ventricular (LV) myocardium to the change in plasma substrate levels and to the increase in the cardiac work load in normal subjects, a total of 18 dynamic positron emission tomographic studies were performed at rest in the fasting state (control) (n=7), after oral glucose administration (n=4), and during dobutamine infusion (n=7) in 7 normal volunteers. The clearance rate constant (Kmono) was similar in the control (0.065±0.017 min< 1) and glucose loading states (0.059±0.OO8 min−1), whereas a significant increase in Kmono was observed during dobutamine infusion (0.106±0.018 min−1) (p< 0.01) in relation to the increase in the pressure-rate product with a correlation coefficient of 0.873 (p< 0.01). When the LV myocardium was divided into 6 segments, there were no significant differences among the segments in Kmono values in any condition. These normal responses should be valuable for assessing oxidative metabolic reserve and regional changes in oxidative metabolism in patients with coronary artery disease.

Key words

Positron emission tomography 11C-acetate myocardial metabolism dobutamine oxygen consumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schelbert HR, Henze E, Phelps ME: Emission tomography of the heart.Semin Nucl Med 10: 355–373, 1980PubMedCrossRefGoogle Scholar
  2. 2.
    Bergmann SR, Fox KAA, Geltman EM, et al: Positron emission tomography of the heart.Prog Cardiovasc Dis 28: 165–194, 1985PubMedCrossRefGoogle Scholar
  3. 3.
    Schon HR, Schelbert HR, Robinson G, et al: C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium.Am Heart J 103:532–547, 1982PubMedCrossRefGoogle Scholar
  4. 4.
    Grover-McKay M, Schelbert HR, Schwaiger M, et al: Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis.Circulation 74: 281–292, 1986PubMedGoogle Scholar
  5. 5.
    Marshall RC, Tillisch JH, Phelps ME, et al: Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography,18F-labeled fluorodeoxyglucose and N-13 ammonia.Circulation 67: 766–788, 1983PubMedGoogle Scholar
  6. 6.
    Tillisch J, Brunken R, Marshall R, et al: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography.N Eng J Med 314: 884–888, 1986CrossRefGoogle Scholar
  7. 7.
    Tamaki N, Yonekura Y, Yamashita K, et al: Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting.Am J Cardiol 64: 860–865, 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Schelbert H, Henze E, Sochor H, et al: Effect of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction.Am Heart J 111: 1055–1064, 1986PubMedCrossRefGoogle Scholar
  9. 9.
    Berry JJ, Baker JA, Pieper KS, et al: The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers.J Nucl Med 32: 1518–1525, 1991PubMedGoogle Scholar
  10. 10.
    Brown M, Marshall DR, Sobel BE, et al: Delineation of myocardial utilization with carbon-11-labeled acetate.Circulation 76: 687–696, 1987PubMedGoogle Scholar
  11. 11.
    Buxton DB, Schwaiger M, Nguyen A, et al: Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux.Circ Res 63: 628–634, 1988PubMedGoogle Scholar
  12. 12.
    Brown MA, Myears DW, Bergmann SR: Noninvaive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and dynamic positron emission tomography.JACC 12: 1054–1063, 1988PubMedGoogle Scholar
  13. 13.
    Buxton DB, Nienaber CA, Luxen A, et al: Noninvasive quantitation of regional myocardial oxygen consumptionin vivo with l-11C acetate and dynamic positron emission tomography.Circulation 79: 134–142, 1989PubMedGoogle Scholar
  14. 14.
    Brown MA, Myears DW, Bergmann SR: Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization.J Nucl Med 30: 187–193, 1989PubMedGoogle Scholar
  15. 15.
    Ambrecht JJ, Buxton DB, Brunken RC, et al: Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C] acetate and dynamic positron tomography.Circulation 80: 863–872, 1989Google Scholar
  16. 16.
    Henes CG, Bergmann SR, Walsh MN, et al: Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate.J Nucl Med 30: 1489–1499, 1989PubMedGoogle Scholar
  17. 17.
    Walsh MN, Geltman EM, Brown MA, et al: Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography using carbon-11 acetate in patients with myocardial infarction.J Nucl Med 30: 1798–1808, 1989PubMedGoogle Scholar
  18. 18.
    Gropler RJ, Siegel BA, Geltman EM: Myocardial uptake of carbon-11-acetate as an indirect estimate of regional myocardial blood flow.J Nucl Med 32: 245–251, 1991PubMedGoogle Scholar
  19. 19.
    Pike VW, Eakins MN, Allan RM et al: Preparation of [111C]acetate as agent for the study of myocardial metabolism by positron emission tomography.Int J Appl Radiat Isot 33: 505–512, 1982PubMedCrossRefGoogle Scholar
  20. 20.
    Stratmann HG, Kennedy H: Evaluation of coronary artery disease in the patients unable to exercise: alternatives to exercise stress testing.Am Heart J 117: 1344–1365, 1989PubMedCrossRefGoogle Scholar
  21. 21.
    Tamaki N, Kawamoto M, Takahashi N, et al: Metabolic reserve in normal myocardium assessed by positron emission tomography with C-11 palmitate.Ann Nucl Med 5: 53–58, 1991PubMedCrossRefGoogle Scholar
  22. 22.
    Senda M, Tamaki N, Yonekura Y, et al: Performance characteristics of Positologica III, a whole body positron emission tomograph.J Comput Assist Tomogr 9: 940–946, 1985PubMedCrossRefGoogle Scholar
  23. 23.
    Randle PJ, England PJ, Denton RM: Control of the tricarboxylate cycle and its interaction with glycolysis during aceta e ut lization in rat heart.Biochem J 117: 677–695, 1970PubMedGoogle Scholar
  24. 24.
    Nelson RR, Gobel FL, Jorgensen CR, et al: Hemodynami cprediction of myocardial oxygen consumption during static and dynamic exerciseCirculation 50: 1179–1189, 1974PubMedGoogle Scholar
  25. 25.
    Rooke GA, Feigl EO: Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting.Circ Res 50: 273–286, 1982PubMedGoogle Scholar
  26. 26.
    Neely JR, Rovetto MJ, Oran JF: Myocardial utilization of carbohydrate and lipids.Prog Cardiovasc Dis 15: 89–301, 1972CrossRefGoogle Scholar
  27. 27.
    Tamaki N, Yonekura Y, Kawamoto M, et al: Simple quantification of regional myocardial uptake of fluorine-18-deoxyglucose in the fasting condition.J Nucl Med 32: 2152–2157, 1991PubMedGoogle Scholar
  28. 28.
    Hicks RJ, Herman WH, Kalff et al: Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography.JACC 18: 101–111, 1991PubMedGoogle Scholar
  29. 29.
    Tuttle RR, Millis J: Dobutamine. Development of new catecholamine to selectively increase cardiac contractility.Circ Res 36: 185–196, 1975PubMedGoogle Scholar
  30. 30.
    Meyer SL, Curry GC, Donsky MS, et al: Influence of dobutamine on hemodynamics and coronary blood flow in patients with and without coronary artery disease.Am J Cardiol 8: 103–108, 1976CrossRefGoogle Scholar
  31. 31.
    Mason JR, Palac RT, Freeman ML, et al: Thallium-201 scintigraphy during dobutamine infusion: nonexercise-dependent screening test for coronary disease.Am Heart J 107: 481–485, 1984PubMedCrossRefGoogle Scholar
  32. 32.
    Berthe C, Pierard LA, Hiernaux M, et al: Predicting the extent and location of coronary artery disease in acute myocardial infarction by echocardiography during dubutamine infusion.Am J Cardiol 58: 1167–1172, 1986PubMedCrossRefGoogle Scholar
  33. 33.
    Wolpers HG, Nguyen N, Buck A, et al: Relationship of C-ll acetate kinetics and hemodynamic performance in the canine heart (abstr).J Nucl Med 31: 785, 1990Google Scholar
  34. 34.
    Buck A, Wolpers HG, Hutchins GD, et al: Effects of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET.J Nucl Med 32: 1950–1957, 1991PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Nagara Tamaki
    • 1
  • Yasuhiro Magata
    • 1
  • Norio Takahashi
    • 1
  • Masahide Kawamoto
    • 1
  • Tatsuo Torizuka
    • 1
  • Yoshiharu Yonekura
    • 1
  • Sadahiko Nishizawa
    • 1
  • Norihiro Sadato
    • 1
  • Eiji Tadamura
    • 1
  • Shinji Ono
    • 2
  • Ryuji Nohara
    • 2
  • Hirofumi Kambara
    • 2
  • Junji Konishi
    • 1
  1. 1.Department of Nuclear MedicineKyoto University Faculty of MedicineKyotoJapan
  2. 2.Third Department of Internal MedicineKyoto University Faculty of MedicineKyotoJapan

Personalised recommendations