Advertisement

Applied Magnetic Resonance

, Volume 12, Issue 4, pp 411–422 | Cite as

Several RYDMR studies on the radical-ion pair formed in the photolysis of TMPD: Photoconductivity, transient-absorption and fluorescence detection methods

  • H. Murai
  • A. Matsuyama
  • Y. Iwasaki
  • K. Enjo
  • K. Maeda
  • T. Azumi
Article

Abstract

Three different RYDMR (reaction-yield detected magnetic resonance) techniques, photoconductivity detected magnetic resonance (PCDMR), transient-absorption detected magnetic resonance (ADMR) and delayed fluorescence detected magnetic resonance (DFDMR), are applied to the investigation of the radical-ion pair formed in the photolysis of TMPD in mixed alcohol solution. Here, PCDMR is a newly developed RYDMR method to study the radical-ion pair. PCDMR and ADMR methods show the acceleration of the quenching reaction from the triplet manifold of the radical-ion pair by microwave radiation under electron spin resonance conditions. These spectra of the radical-ion pair are significantly broadened probably because of the dynamic behavior of the radical-ion pair interacting strongly. The long lifetime of the radical-ion pair is due to the Coulomb interaction and the special role of the mixed solvent containing 2-propanol that stabilizes the radical-ion pair. Furthermore, the simultaneous observation of the PCDMR and the DFDMR shows different spectra. This indicates that the spectrum observed by the DFDMR is due to the weakly interacting RIP formed through the pathway different from those observed by the other two methods.

Keywords

Microwave Radiation Transient Absorption Microwave Pulse Solvate Electron Magnetic Field Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hirata Y., Mataga N.: J. Phys. Chem.89, 4031–4035 (1985)CrossRefGoogle Scholar
  2. [2]
    Tanimoto Y., Watanabe T., Nakagaki R., Hiramatsu M., Nagakura S.: Chem. Phys. Lett.116, 341–344 (1985)CrossRefADSGoogle Scholar
  3. [3]
    Percy L.T., Baker M.G., Trifunac A.D.: J. Phys. Chem.93, 4393–4396 (1989)CrossRefGoogle Scholar
  4. [4]
    Bakker M.G., Trifunac A.D.: J. Phys. Chem.95, 550–555 (1991)CrossRefGoogle Scholar
  5. [5]
    Murai H., Kuwata K.: Chem. Phys. Lett.164, 567–570 (1989)CrossRefADSGoogle Scholar
  6. [6]
    Shkrob I.A., Cromack K.R., Trifunac A.D.: Chem. Phys.202, 117–128 (1996)CrossRefGoogle Scholar
  7. [7]
    Avdievich N., Jeevanjan A.S., Forbes M.D.E.: J. Phys. Chem.100, 5334–5342 (1996)CrossRefGoogle Scholar
  8. [8]
    Wasielewski M.R., Bock C.H., Bowman M.K., Norris J.R.: Nature303, 520–522 (1983)CrossRefADSGoogle Scholar
  9. [9]
    Batchelor S.N., McLauchlan K.A., Shkrob I.A.: Mol. Phys.75, 501–529 (1992)CrossRefADSGoogle Scholar
  10. [10]
    Maeda K., Araki Y., Kamata Y., Enjo K., Murai H., Azumi T.: Chem. Phys. Lett.262, 110–114 (1996)CrossRefADSGoogle Scholar
  11. [11]
    Murai H., Matsuyama A., Ishida T., Iwasaki Y., Maeda K., Azumi T.: Chem. Phys. Lett. (in press)Google Scholar
  12. [12]
    Shiraishi H., Ishigure K., Morokuma K.: J. Chem. Phys.88, 4637–4649 (1988)CrossRefADSGoogle Scholar
  13. [13]
    Shushin A.I.: Chem. Phys. Lett.181, 274–278 (1991)CrossRefADSGoogle Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • H. Murai
    • 1
  • A. Matsuyama
    • 1
  • Y. Iwasaki
    • 1
  • K. Enjo
    • 1
  • K. Maeda
    • 1
  • T. Azumi
    • 1
  1. 1.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations