Skip to main content
Log in

Several RYDMR studies on the radical-ion pair formed in the photolysis of TMPD: Photoconductivity, transient-absorption and fluorescence detection methods

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Three different RYDMR (reaction-yield detected magnetic resonance) techniques, photoconductivity detected magnetic resonance (PCDMR), transient-absorption detected magnetic resonance (ADMR) and delayed fluorescence detected magnetic resonance (DFDMR), are applied to the investigation of the radical-ion pair formed in the photolysis of TMPD in mixed alcohol solution. Here, PCDMR is a newly developed RYDMR method to study the radical-ion pair. PCDMR and ADMR methods show the acceleration of the quenching reaction from the triplet manifold of the radical-ion pair by microwave radiation under electron spin resonance conditions. These spectra of the radical-ion pair are significantly broadened probably because of the dynamic behavior of the radical-ion pair interacting strongly. The long lifetime of the radical-ion pair is due to the Coulomb interaction and the special role of the mixed solvent containing 2-propanol that stabilizes the radical-ion pair. Furthermore, the simultaneous observation of the PCDMR and the DFDMR shows different spectra. This indicates that the spectrum observed by the DFDMR is due to the weakly interacting RIP formed through the pathway different from those observed by the other two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirata Y., Mataga N.: J. Phys. Chem.89, 4031–4035 (1985)

    Article  Google Scholar 

  2. Tanimoto Y., Watanabe T., Nakagaki R., Hiramatsu M., Nagakura S.: Chem. Phys. Lett.116, 341–344 (1985)

    Article  ADS  Google Scholar 

  3. Percy L.T., Baker M.G., Trifunac A.D.: J. Phys. Chem.93, 4393–4396 (1989)

    Article  Google Scholar 

  4. Bakker M.G., Trifunac A.D.: J. Phys. Chem.95, 550–555 (1991)

    Article  Google Scholar 

  5. Murai H., Kuwata K.: Chem. Phys. Lett.164, 567–570 (1989)

    Article  ADS  Google Scholar 

  6. Shkrob I.A., Cromack K.R., Trifunac A.D.: Chem. Phys.202, 117–128 (1996)

    Article  Google Scholar 

  7. Avdievich N., Jeevanjan A.S., Forbes M.D.E.: J. Phys. Chem.100, 5334–5342 (1996)

    Article  Google Scholar 

  8. Wasielewski M.R., Bock C.H., Bowman M.K., Norris J.R.: Nature303, 520–522 (1983)

    Article  ADS  Google Scholar 

  9. Batchelor S.N., McLauchlan K.A., Shkrob I.A.: Mol. Phys.75, 501–529 (1992)

    Article  ADS  Google Scholar 

  10. Maeda K., Araki Y., Kamata Y., Enjo K., Murai H., Azumi T.: Chem. Phys. Lett.262, 110–114 (1996)

    Article  ADS  Google Scholar 

  11. Murai H., Matsuyama A., Ishida T., Iwasaki Y., Maeda K., Azumi T.: Chem. Phys. Lett. (in press)

  12. Shiraishi H., Ishigure K., Morokuma K.: J. Chem. Phys.88, 4637–4649 (1988)

    Article  ADS  Google Scholar 

  13. Shushin A.I.: Chem. Phys. Lett.181, 274–278 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murai, H., Matsuyama, A., Iwasaki, Y. et al. Several RYDMR studies on the radical-ion pair formed in the photolysis of TMPD: Photoconductivity, transient-absorption and fluorescence detection methods. Appl. Magn. Reson. 12, 411–422 (1997). https://doi.org/10.1007/BF03164122

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164122

Keywords

Navigation