Applied Magnetic Resonance

, Volume 10, Issue 1–3, pp 319–338 | Cite as

Quantitative EPR studies of transition metal ions in oxide, aluminosilicate and polymer matrices

  • K. Dyrek
  • A. Rokosz
  • A. Madej
  • E. Bidzińska


The importance of the proper choice of diamagnetic diluent used for preparation of standards for quantitative EPR measurements is shown by the example of CuSO4 and VOSO4 standards. The results of determination of the stability of chemical composition of VOSO4-K2SO4 standards stored for various periods of time, performed by different analytical methods, are compared. The examples are given to illustrate application of quantitative EPR measurements in the studies of structure and properties of transition metal ions dispersed in various matrices. Changes in the coordination sphere of surface transition metal ions occurring upon adsorption of gas molecules, the degree of dispersion of these ions and the extent of Mn+−Mn+ interactions derived from quantitative EPR measurements are described. The results of investigation of the mechanism of adsorption and catalytic reactions occurring on dispersed transition metal ions are presented.


Acrylic Acid Vanadyl Sulfate Seal Quartz Tube Paramagnetic Substance Integral Signal Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Czoch R.: Appl. Magn. Reson.10, 293–317 (1996).CrossRefGoogle Scholar
  2. [2]
    Dyrek K., Rokosz A., Madej A.: Appl. Magn. Reson.6, 309 (1994)CrossRefGoogle Scholar
  3. [3]
    Alger R.S.: Electron Paramagnetic Resonance. p. 201. Interscience Publishers 1968.Google Scholar
  4. [4]
    Balhausen C.J., Djurinskij B.F., Watson K.J.: J. Am. Chem. Soc.90, 3305 (1968)CrossRefGoogle Scholar
  5. [5]
    Madej A., Dyrek K., Mattusch J.: Fresenius J. Anal. Chem.341, 707 (1991)CrossRefGoogle Scholar
  6. [6]
    Narayana M., Zhan R.Y., Kevan L.: J. Phys. Chem.89, 636 (1985)CrossRefGoogle Scholar
  7. [7]
    Che M., Louis C., Sojka Z.: J. Che. Soc., Faraday Trans. I85, 3939 (1989)CrossRefGoogle Scholar
  8. [8]
    Manoharan P.T., Rogers M.T.: J. Chem. Phys.49, 5510 (1968)CrossRefADSGoogle Scholar
  9. [9]
    Louis C., Che M.: J. Phys. Chem.91, 2875 (1987)CrossRefGoogle Scholar
  10. [10]
    Sojka Z., Dyrek K., Roberge P.C., Che M.: Polish J. Chem.65, 637 (1991)Google Scholar
  11. [11]
    Dyrek K., Kruczala K., Sojka Z., Schlick S.: J. Phys. Chem.97, 9196 (1993)CrossRefGoogle Scholar
  12. [12]
    Che M., Fournier M., Launay J.P.: J. Chem. Phys.71, 1954 (1979)CrossRefADSGoogle Scholar
  13. [13]
    Dyrek K., Kruczała K., Sojka Z. in: Proc. VII Intern. Symp. on Magnetic Resonance in Colloid and Interface Science, Madrid, September 1995.Google Scholar
  14. [14]
    Dyrek K., Sojka Z.: J. Chem. Soc., Faraday Trans. I78, 3177 (1982)CrossRefGoogle Scholar
  15. [15]
    Gesmundo F., Rossi P.F.: J. Solid State Chem.8, 287 (1973)CrossRefADSGoogle Scholar
  16. [16]
    Dyrek K.: Bull. Acad. Pol. Sci., Ser. Sci. Chim.21, 675 (1973)Google Scholar
  17. [17]
    Sojka Z., Che M.: J. Phys. Chem.99, 5418 (1985)CrossRefGoogle Scholar
  18. [18]
    Che M., Dyrek K., Louis C.: J. Phys. Chem.89, 4526 (1985)CrossRefGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • K. Dyrek
    • 1
  • A. Rokosz
    • 2
  • A. Madej
    • 2
  • E. Bidzińska
    • 3
  1. 1.Department of Inorganic ChemistryJagiellonian UniversityCracowPoland
  2. 2.Department of Analytical ChemistryJagiellonian UniversityCracowPoland
  3. 3.Regional Laboratory of Physicochemical Analyses and Structural ResearchCracowPoland

Personalised recommendations