Advertisement

Applied Magnetic Resonance

, Volume 10, Issue 1–3, pp 45–53 | Cite as

Principles of computer simulation of EPR spectra

  • J. R. Pilbrow
Article

Abstract

Computer simulations continue to be important in EPR spectroscopy and improved strategies are needed to make the modelling more realistic. Realistic models should ideally seek to account for all of the fundamental interactions that both underlay the spin Hamiltonian and which determine the lineshapes and linewidths, as well as the field-swept nature of EPR. Whilst it is not always possible to retain all of the fundamental principles in practice, distinction between physical assumptions and mathematical approximations should always be correctly made. Key features which should be found in computer simulation algorithms are outlined.

Keywords

Freeze Solution Field Sweep Porphyrazine Orientational Dependence Lineshape Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pilbrow J.R.: Transition Ion Electron Paramagnetic Resonance, chap. 5. Oxford: Clarendon Press 1990.Google Scholar
  2. [2]
    Pilbrow J.R.: Appl. Magn. Reson.6, 161 (1994)CrossRefGoogle Scholar
  3. [3]
    Pilbrow J.R.: Transition Ion Electron Paramagnetic Resonance, chap. 1. Oxford: Clarendon Press 1990.Google Scholar
  4. [4]
    Pilbrow J.R.: J. Magn. Reson.58, 186 (1984)Google Scholar
  5. [5]
    Coffman R.E.: J. Phys. Chem.79, 1129 (1975)CrossRefGoogle Scholar
  6. [6]
    Bleaney B.: Proc. Phys. Soc.A75, 621 (1961)CrossRefGoogle Scholar
  7. [7]
    Pilbrow J.R.: Molec. Phys.16, 307 (1969)CrossRefADSGoogle Scholar
  8. [8]
    Kneubuhl F., Natterer B.: Helv. Phys. Acta.34, 710 (1960)Google Scholar
  9. [9]
    Carr S.G., Pilbrow J.R., Smith T.D.: J. Chem. Soc. Faraday Trans II70, 497 (1974)CrossRefGoogle Scholar
  10. [10]
    Smith T.D., Pilbrow J.R.: Coordin. Chem. Rev.13, 173 (1974)CrossRefGoogle Scholar
  11. [11]
    Aasa R., Vanngard T.: J. Magn. Reson.19, 308 (1975)Google Scholar
  12. [12]
    Gonzalez-Tovany L., Beltran-Lopez V.: J. Magn. Reson.89, 227 (1990)Google Scholar
  13. [13]
    Beltran-Lopez V., Castro-Tello J.: J. Magn. Reson.47, 19 (1982)Google Scholar
  14. [14]
    Beltran-Lopez V., Castro-Tello J.: J. Magn. Reson.39, 437 (1980)Google Scholar
  15. [15]
    Stoneham A.M.: Rev. Mod. Phys.41, 82 (1969)CrossRefADSGoogle Scholar
  16. [16]
    Hagen W.R., Hearshen D.O., Sands R.H., Dunham W.R.: J. Magn. Reson.61, 220 (1985)Google Scholar
  17. [17]
    Hagen W.R., Hearshen D.O., Harding L.J., Dunham W.R.: J. Magn. Reson61 233 (1985)Google Scholar
  18. [18]
    Hyde J.S., Pasenkiewicz-Gierula M., Jesmanowicz A., Antholine W.E.: Appl. Magn. Reson.1, 483 (1990)CrossRefGoogle Scholar
  19. [19]
    Hyde J.S., Pasenkiewicz-Gierula M., Ratke J.J., Antholine, W.E.: J. Magn. Reson.96, 1 (1992)Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • J. R. Pilbrow
    • 1
  1. 1.Department of PhysicsMonash UniversityClaytonAustralia

Personalised recommendations