Applied Magnetic Resonance

, Volume 7, Issue 2–3, pp 415–425 | Cite as

EPR study of radical anions of C60 and C70

  • J. Friedrich
  • P. Schweitzer
  • K. -P. Dinse
  • P. Rapta
  • A. Stasko


Utilizing highly polar solvents for the stabilization of Fullerene anions, electrochemical and chemical reduction resulted in narrow single line EPR spectra for the monoanions of C60 and C70 being characterized byg=2.0001(1), ΔB=0.075 mT,g=2.0019(1), ΔB=0.016 mT, respectively. Apparently, the orbital degeneracy of the C60 monoanion is lifted under these conditions to such an extent, that the abnormal large spin lattice relaxation rate believed to be responsible for the approximately 5 mT line width of the monoanion is sufficiently reduced.13C enrichment resulted in noticeable line broadening, allowing an estimate of the average13C hyperfine coupling constanta ave=0.1 mT.


Fullerene Line Width Electrochemical Reduction TMEDA HMPA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Xi Q., Perez-Lodero E., Echegoyen L.: J. Am. Chem. Soc.114, 3978 (1992)CrossRefGoogle Scholar
  2. [2]
    Dubois D., Jones M.T., Kadish K.M.: J. Am. Chem. Soc.114, 6446 (1992)CrossRefGoogle Scholar
  3. [3]
    Stankowski J., Byszewski P., Kempinski W., Trybula Z., Zuk T.: phys. status solidi (b)178, 221 (1993)CrossRefADSGoogle Scholar
  4. [4]
    Schell-Sorokin A.J., Mehran F., Eaton G.R., Eaton S.S., Viehbeck A., O’Toole T.R., Brown C.A.: Chem. Phys. Lett.195, 225 (1992)CrossRefADSGoogle Scholar
  5. [5]
    Stinchcombe J., Penicaud A., Bhyrappa P., Boyd P.D.W., Reed C.A.: J. Am. Chem. Soc.115, 5212 (1993)CrossRefGoogle Scholar
  6. [6]
    Harigaya K.: Phys. Rev.B45, 13676 (1992)CrossRefGoogle Scholar
  7. [7]
    Bennati B., Grupp A., Bäuerle P., Mehring M.: Proc. IWPNM93 (Kuzmany H., Mehring M., Fink J., eds.) 1993.Google Scholar
  8. [8]
    Baumgarten M., Gngel A., Gherghel L.: Adv. Mater.5, 458 (1993)CrossRefGoogle Scholar
  9. [9]
    Kukolich S.G., Huffman D.R.: Chem. Phys. Lett.182, 263 (1991)CrossRefADSGoogle Scholar
  10. [10]
    Stasko A., Malik L., Tkac A., Adacik V., Hronec M.: Org. Magn. Reson.9, 269 (1977)CrossRefGoogle Scholar
  11. [11]
    Johnson R.D., Yannoni R.D.S., Dorn H.C., Salem J.R., Bethune D.S.: Science255, 1235 (1992)CrossRefADSGoogle Scholar
  12. [12]
    Kato T., Kodama T., Oyama M., Okazaki S., Shida T., Nakagaqa T., Matsui Y., Suzuki S., Shiromaru H., Yamauchi K., Achiba Y.: Chem. Phys. Lett.186, 35 (1991)CrossRefADSGoogle Scholar
  13. [13]
    Dunsch L.: Proc Int. Winter School on the “Electronic Properties of Novel Materials (IWPNM94)” (Kuzmany H., Mehring M., Fink J., Roth S., eds.). World Scientific Pub. Co. 1994.Google Scholar
  14. [14]
    Baumgarten M., Gherghel L., Proc. Int. Winter School on the “Electronic Properties of Novel Materials (IWPNM94)” (Kuzmany H., Mehring M., Fink J., Roth S., eds.). World Scientific Pub. Co. 1994.Google Scholar
  15. [15]
    Koga N., Morokuma K.: Chem. Phys. Lett.196, 191 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • J. Friedrich
    • 1
  • P. Schweitzer
    • 1
  • K. -P. Dinse
    • 1
  • P. Rapta
    • 2
  • A. Stasko
    • 2
  1. 1.Institut für Physikalische Chemie IIITH DarmstadtDarmstadtGermany
  2. 2.Institute of Physical ChemistrySlovak Technical UniversityBratislavaSlovakian Republic

Personalised recommendations