Advertisement

Applied Magnetic Resonance

, Volume 8, Issue 1, pp 25–33 | Cite as

Periodic microwave absorption in superconducting whiskers

  • B. Czyżak
  • B. Andrzejewski
  • L. Szcześniak
  • N. Danilova
  • J. Stankowski
Article

Abstract

The microwave absorption and structural studies of BiSrCaCuO (2212) whiskers have been performed. The low-angle boundaries in the (a, b) and (a, c) planes have been observed. The periodic microwave absorption signal indicated the flux quantization in a system of weak links and superconducting loops formed on the boundaries. Regular character of this signal suggests possible applications in SQUID magnetometry. Lower Josephson critical fieldH clJ=1.6 Oe and the critical temperatureT c=89 K have been determined. The Josephson penetration depth was estimated from the Ginzgurg-Landau, and Clem models.

Keywords

Josephson Junction Microwave Absorption Effective Permeability Whisker Growth Flux Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Matsubara I., Kageyama H., Tanigawa H., Ogura T., Yamashita H., Kawai T.: Jap. Journal Appl. Phys.28, L1121 (1989)CrossRefADSGoogle Scholar
  2. [2]
    Matsubara I., Tanigawa H., Ogura T., Yamashita H., Kinoshita M.: Appl. Phys. Letters58, 409 (1991)CrossRefADSGoogle Scholar
  3. [3]
    Suzuki Y., Inoue T., Hayashi S., Komatsu H.: Jap. Journ. Appl. Phys.29, L1089 (1990)CrossRefADSGoogle Scholar
  4. [4]
    Han P.D., Payne D.A.: Journ. Cryst. Growth104, 201 (1990)CrossRefADSGoogle Scholar
  5. [5]
    Krapf A., Lacayo G., Kastner G., Kraak W., Pruss N., Thiele H., Dwelk H., Herman R.: Supercond. Sci. Technol.4, 237 (1991)CrossRefADSGoogle Scholar
  6. [6]
    Stankowski J., Czyżak B., Martinek J.: Phys. Rev.B42, 10255 (1990); Blazey K.W., Portis A.M., Muller K.A., Holtzberg F.: Europhys. Lett.6, 457 (1988)Google Scholar
  7. [7]
    Schultz B., Schlieppe B., Wisny W., Baberschke K.: Solid State Commun.80, 111 (1991)CrossRefADSGoogle Scholar
  8. [8]
    Shi Lei S., Fanqing L., Yunbo J., Guien Z., Yunlong G., Yuheng Z.: Physica C203, 398 (1992)CrossRefADSGoogle Scholar
  9. [9]
    Jung J., Franck J.P., Cheng S.C., Sheinin S.S.: Jap. Journal Appl. Phys.28, L1182 (1989)CrossRefADSGoogle Scholar
  10. [10]
    Latyshev Y.I., Gorlova I.G., Nikita A.M., Antokhina V.U., Zbytsev S.G., Kukhta N.P.: Physica C216, 471 (1993)CrossRefADSGoogle Scholar
  11. [11]
    Mattis D.C., Bardeen J.: Phys. Rev.111, 412 (1958)CrossRefADSMATHGoogle Scholar
  12. [12]
    Gittleman J.I., Rosenblum B.: Phys. Rev. Letters16, 734 (1966)CrossRefADSGoogle Scholar
  13. [13]
    Deutscher G., Muller K.A.: Phys. Rev. Letters59, 1745 (1987)CrossRefADSGoogle Scholar
  14. [14]
    Clem J.R.: Physica C153–155, 50 (1988)CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • B. Czyżak
    • 2
  • B. Andrzejewski
    • 2
  • L. Szcześniak
    • 2
  • N. Danilova
    • 1
  • J. Stankowski
    • 2
  1. 1.Physics DepartmentMoscow UniversityMoscowRussian Federation
  2. 2.Institute of Molecular PhysicsPolish Academy of SciencesPoznańPoland

Personalised recommendations