Skip to main content
Log in

EPR and ENDOR study of porphyrins and their covalently linked dimers in the photoexcited triplet state

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The triplet states of several substituted porphyrins (Tetraphenylporphyrin (H2TPP), Zinc-Tetramethylporphyrin (ZnTMP), Octaethylporphyrin (H2OEP) and the Dication of H2TPP (H4TPP2+)) and two covalently linked dimers with H2TPP-subunits in disordered solid solution were studied by EPR and ENDOR at liquid helium temperature. The measurement yields theA zz component of the hyperfine tensors of all α-protons in the reference frame of the zero field splitting tensor. Dipolar and isotropic contributions toA zz are discussed and spin densities derived. The spin densities are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/S). One of the dimers shows indications of triplet energy transfer between the porphyrin subunits. The order of magnitude of the transfer rate is estimated to be 5 · 105 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber M.: Diss., Freie Univ. Berlin 1989.

  2. Jaegermann P., Plato M., von Maltzan B., Möbius K.: to be published.

  3. Jaegermann P.: Diss., Freie Univ. Berlin 1990.

  4. Fajer J., Davis M.S. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.

    Google Scholar 

  5. van der Waals J.H., van Dorp W.G., Schaafsma T.J. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.

    Google Scholar 

  6. van Dorp W.G., Soma M., Kooter J.A., van der Waals, J.H.: Mol. Phys.28, 1551–1568 (1974)

    Article  ADS  Google Scholar 

  7. Schoemaker W.H., van Dorp W.G.: Mol. Phys.30, 1701 (1975)

    Article  ADS  Google Scholar 

  8. Kooter J.A., Soma M., van der Waals J.H.: Mol. Phys.37, 997 (1979)

    Article  ADS  Google Scholar 

  9. van der Poel W.A.J.A., Singel D.J., Schmidt J., van der Waals J.H.: Mol. Phys.49, 1017–1028 (1983)

    Article  ADS  Google Scholar 

  10. van der Poel W.A.J.A., van der Waals J.H.: Mol. Phys.53, 673–694 (1984)

    Article  ADS  Google Scholar 

  11. Kirste B., van Willigen H.: Chem. Phys. Lett.92, 339–342 (1982)

    Article  ADS  Google Scholar 

  12. van Willigen H., Chandrashekar T.K.: J. Chem. Phys.78, 7093–7098 (1983)

    Article  ADS  Google Scholar 

  13. Lendzian F., van Willigen H., Sastry S., Möbius K., Scheer H., Feick R.: Chem. Phys. Lett.118, 145 (1985)

    Article  ADS  Google Scholar 

  14. von Maltzan B.: Liebigs Ann. Chemie1980, 1082–1107.

  15. von Maltzan B.: Diss., Freie Univ. Berlin 1984.

  16. Möbius K., Biehl R. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.). New York: Plenum Press 1979.

    Google Scholar 

  17. Lendzian F.: Diss., Freie Univ. Berlin 1982.

  18. Hyde J.S.: J. Chem. Phys.43, 1806 (1965)

    Article  ADS  Google Scholar 

  19. Kemple M., in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.). New York: Plenum Press 1979.

    Google Scholar 

  20. McGlynn S.P., Azumi T., Kinoshita M.: Molecular Spectroscopy of the Triplet State. New Jersey: Prentice-Hall 1969.

    Google Scholar 

  21. Wassermann E., Snyder L.C., Yager W.A.: J. Chem. Phys.41, 1763–1772 (1964)

    Article  ADS  Google Scholar 

  22. Gonen O., Levanon H.: J. Chem. Phys.84, 4132–4141 (1986)

    Article  ADS  Google Scholar 

  23. McConnell H.M.: J. Chem. Phys.24, 764–766 (1956)

    Article  ADS  Google Scholar 

  24. McConnell H.M., Strathdee J.: Mol. Phys.2, 129–138 (1959)

    Article  ADS  Google Scholar 

  25. Kooter J.A., van der Waals J.H., Knop J.V.: Mol. Phys.37, 1015–1036 (1979)

    Article  ADS  Google Scholar 

  26. Hamacher V., Plato M., Möbius K.: Appl. Magn. Reson.4, this issue (1993), subsequent to this contribution.

  27. Vogel V., Köcher M., Schmickler H., Lex J.: Angew. Chem.98, 262–264 (1986) Angew. Chem. Int. Ed.25, 257–259 (1986)

    Article  Google Scholar 

  28. Hamacher V.: Diss., Freie Univ. Berlin 1991.

  29. Pople J.A., Beveridge D.L.: Approximate Molecular Orbital Theory. New York: McGraw-Hill 1970.

    Google Scholar 

  30. Ridley J., Zerner M.: Theoret. Chim. Acta (Berl.)32, 111–134 (1973)

    Article  Google Scholar 

  31. Hurst G.C., Henderson T.A., Kreilick R.W.: J. Am. Chem. Soc.107, 7294–7303 (1985)

    Article  Google Scholar 

  32. Greiner S.P.: Diss., Univ. Rochester 1985.

  33. Goutermann M.: J. Chem. Phys.30, 1139–1161 (1959)

    Article  ADS  Google Scholar 

  34. Goutermann M. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.

    Google Scholar 

  35. Shelnutt J.A., Ortiz V.: J. Phys. Chem.89, 4733–4739 (1985)

    Article  Google Scholar 

  36. Scholz M., Köhler H.J.: Quantenchemie 3. Berlin: VEB Deutscher Verlag der Wissenschaften 1981.

    Google Scholar 

  37. Langhoff S.R., Davidson E.R., Goutermann M., Leenstra W.R., Kwiram A.L.: J. Chem. Phys.62, 169–176 (1975)

    Article  ADS  Google Scholar 

  38. Winscom C.J., Maniero A.L., Möbius K.: Chem. Phys. Lett.128, 244–249 (1986)

    Article  ADS  Google Scholar 

  39. Carrington A., McLauchlan A.D.: Introduction to Magnetic Resonance. New York: Harper & Row 1969.

    Google Scholar 

  40. Pautmeyer L., Ries B., Richert R., Bässler H.: Chem. Phys. Lett.143, 459–462 (1988)

    Article  ADS  Google Scholar 

  41. Posener D.W.: Australian J. Phys.12, 184 (1959)

    ADS  Google Scholar 

  42. Lhoste J.M., Grivet J.Ph.: Adv. Radiat. Res. Phys. Chem.1, 327–337 (1973)

    Google Scholar 

  43. Stone A., Fleischer E.B.: J. Am. Chem. Soc.90, 2735–2748 (1968)

    Article  Google Scholar 

  44. Smaller B., Avery E.C., Remko J.R.: J. Chem. Phys.46, 3976–3983 (1967)

    Article  ADS  Google Scholar 

  45. van Willigen H., Chandrashekar T.K., Das U., Ebersole M.E. in: Porphyrins — Excited States and Dynamics (Goutermann M., Rentzepis P.M., Straub K.D., eds.). Washington: ACS Symposium Series, American Chem. Society 1986.

  46. Feher G., Hoff A.J., Isaacson R.A., Ackerson L.: Ann. N.Y. Acad. Sci.244, 239–259 (1975)

    Article  ADS  Google Scholar 

  47. Kevan L., Kispert L.D.: Electron Spin Double Resonance Spectroscopy. New York: John Wiley & Sons 1976.

    Google Scholar 

  48. Anderson P.W.: J. Phys. Soc. Japan9, 316–339 (1954)

    Article  ADS  Google Scholar 

  49. Abragam A.: The Principles of Nuclear Magnetism (Mott N.F., Bullard E.C., Wilkinson D.H., eds.), chap.9.2., The International Series of Monographs on Physics. Oxford: Clarendon Press 1961.

    Google Scholar 

  50. Dexter D.L.: J. Chem. Phys.21, 836–850 (1953)

    Article  ADS  Google Scholar 

  51. Rösch N.: Diss., Univ. Stuttgart 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamacher, V., Wrachtrap, J., von Maltzan, B. et al. EPR and ENDOR study of porphyrins and their covalently linked dimers in the photoexcited triplet state. Appl. Magn. Reson. 4, 297–319 (1993). https://doi.org/10.1007/BF03162504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162504

Keywords

Navigation