Applied Magnetic Resonance

, Volume 4, Issue 3, pp 297–319 | Cite as

EPR and ENDOR study of porphyrins and their covalently linked dimers in the photoexcited triplet state

  • V. Hamacher
  • J. Wrachtrap
  • B. von Maltzan
  • M. Plato
  • K. Möbius


The triplet states of several substituted porphyrins (Tetraphenylporphyrin (H2TPP), Zinc-Tetramethylporphyrin (ZnTMP), Octaethylporphyrin (H2OEP) and the Dication of H2TPP (H4TPP2+)) and two covalently linked dimers with H2TPP-subunits in disordered solid solution were studied by EPR and ENDOR at liquid helium temperature. The measurement yields theA zz component of the hyperfine tensors of all α-protons in the reference frame of the zero field splitting tensor. Dipolar and isotropic contributions toA zz are discussed and spin densities derived. The spin densities are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/S). One of the dimers shows indications of triplet energy transfer between the porphyrin subunits. The order of magnitude of the transfer rate is estimated to be 5 · 105 s−1.


Porphyrin PMMA Triplet State Spin Density ENDOR Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Huber M.: Diss., Freie Univ. Berlin 1989.Google Scholar
  2. [2]
    Jaegermann P., Plato M., von Maltzan B., Möbius K.: to be published.Google Scholar
  3. [3]
    Jaegermann P.: Diss., Freie Univ. Berlin 1990.Google Scholar
  4. [4]
    Fajer J., Davis M.S. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.Google Scholar
  5. [5]
    van der Waals J.H., van Dorp W.G., Schaafsma T.J. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.Google Scholar
  6. [6]
    van Dorp W.G., Soma M., Kooter J.A., van der Waals, J.H.: Mol. Phys.28, 1551–1568 (1974)CrossRefADSGoogle Scholar
  7. [7]
    Schoemaker W.H., van Dorp W.G.: Mol. Phys.30, 1701 (1975)CrossRefADSGoogle Scholar
  8. [8]
    Kooter J.A., Soma M., van der Waals J.H.: Mol. Phys.37, 997 (1979)CrossRefADSGoogle Scholar
  9. [9]
    van der Poel W.A.J.A., Singel D.J., Schmidt J., van der Waals J.H.: Mol. Phys.49, 1017–1028 (1983)CrossRefADSGoogle Scholar
  10. [10]
    van der Poel W.A.J.A., van der Waals J.H.: Mol. Phys.53, 673–694 (1984)CrossRefADSGoogle Scholar
  11. [11]
    Kirste B., van Willigen H.: Chem. Phys. Lett.92, 339–342 (1982)CrossRefADSGoogle Scholar
  12. [12]
    van Willigen H., Chandrashekar T.K.: J. Chem. Phys.78, 7093–7098 (1983)CrossRefADSGoogle Scholar
  13. [13]
    Lendzian F., van Willigen H., Sastry S., Möbius K., Scheer H., Feick R.: Chem. Phys. Lett.118, 145 (1985)CrossRefADSGoogle Scholar
  14. [14]
    von Maltzan B.: Liebigs Ann. Chemie1980, 1082–1107.Google Scholar
  15. [15]
    von Maltzan B.: Diss., Freie Univ. Berlin 1984.Google Scholar
  16. [16]
    Möbius K., Biehl R. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.). New York: Plenum Press 1979.Google Scholar
  17. [17]
    Lendzian F.: Diss., Freie Univ. Berlin 1982.Google Scholar
  18. [18]
    Hyde J.S.: J. Chem. Phys.43, 1806 (1965)CrossRefADSGoogle Scholar
  19. [19]
    Kemple M., in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.). New York: Plenum Press 1979.Google Scholar
  20. [20]
    McGlynn S.P., Azumi T., Kinoshita M.: Molecular Spectroscopy of the Triplet State. New Jersey: Prentice-Hall 1969.Google Scholar
  21. [21]
    Wassermann E., Snyder L.C., Yager W.A.: J. Chem. Phys.41, 1763–1772 (1964)CrossRefADSGoogle Scholar
  22. [22]
    Gonen O., Levanon H.: J. Chem. Phys.84, 4132–4141 (1986)CrossRefADSGoogle Scholar
  23. [23]
    McConnell H.M.: J. Chem. Phys.24, 764–766 (1956)CrossRefADSGoogle Scholar
  24. [24]
    McConnell H.M., Strathdee J.: Mol. Phys.2, 129–138 (1959)CrossRefADSGoogle Scholar
  25. [25]
    Kooter J.A., van der Waals J.H., Knop J.V.: Mol. Phys.37, 1015–1036 (1979)CrossRefADSGoogle Scholar
  26. [26]
    Hamacher V., Plato M., Möbius K.: Appl. Magn. Reson.4, this issue (1993), subsequent to this contribution.Google Scholar
  27. [27]
    Vogel V., Köcher M., Schmickler H., Lex J.: Angew. Chem.98, 262–264 (1986) Angew. Chem. Int. Ed.25, 257–259 (1986)CrossRefGoogle Scholar
  28. [28]
    Hamacher V.: Diss., Freie Univ. Berlin 1991.Google Scholar
  29. [29]
    Pople J.A., Beveridge D.L.: Approximate Molecular Orbital Theory. New York: McGraw-Hill 1970.Google Scholar
  30. [30]
    Ridley J., Zerner M.: Theoret. Chim. Acta (Berl.)32, 111–134 (1973)CrossRefGoogle Scholar
  31. [31]
    Hurst G.C., Henderson T.A., Kreilick R.W.: J. Am. Chem. Soc.107, 7294–7303 (1985)CrossRefGoogle Scholar
  32. [32]
    Greiner S.P.: Diss., Univ. Rochester 1985.Google Scholar
  33. [33]
    Goutermann M.: J. Chem. Phys.30, 1139–1161 (1959)CrossRefADSGoogle Scholar
  34. [34]
    Goutermann M. in: The Porphyrins (Dolphin D., ed.), vol. 4. New York: Academic Press 1978.Google Scholar
  35. [35]
    Shelnutt J.A., Ortiz V.: J. Phys. Chem.89, 4733–4739 (1985)CrossRefGoogle Scholar
  36. [36]
    Scholz M., Köhler H.J.: Quantenchemie 3. Berlin: VEB Deutscher Verlag der Wissenschaften 1981.Google Scholar
  37. [37]
    Langhoff S.R., Davidson E.R., Goutermann M., Leenstra W.R., Kwiram A.L.: J. Chem. Phys.62, 169–176 (1975)CrossRefADSGoogle Scholar
  38. [38]
    Winscom C.J., Maniero A.L., Möbius K.: Chem. Phys. Lett.128, 244–249 (1986)CrossRefADSGoogle Scholar
  39. [39]
    Carrington A., McLauchlan A.D.: Introduction to Magnetic Resonance. New York: Harper & Row 1969.Google Scholar
  40. [40]
    Pautmeyer L., Ries B., Richert R., Bässler H.: Chem. Phys. Lett.143, 459–462 (1988)CrossRefADSGoogle Scholar
  41. [41]
    Posener D.W.: Australian J. Phys.12, 184 (1959)ADSGoogle Scholar
  42. [42]
    Lhoste J.M., Grivet J.Ph.: Adv. Radiat. Res. Phys. Chem.1, 327–337 (1973)Google Scholar
  43. [43]
    Stone A., Fleischer E.B.: J. Am. Chem. Soc.90, 2735–2748 (1968)CrossRefGoogle Scholar
  44. [44]
    Smaller B., Avery E.C., Remko J.R.: J. Chem. Phys.46, 3976–3983 (1967)CrossRefADSGoogle Scholar
  45. [45]
    van Willigen H., Chandrashekar T.K., Das U., Ebersole M.E. in: Porphyrins — Excited States and Dynamics (Goutermann M., Rentzepis P.M., Straub K.D., eds.). Washington: ACS Symposium Series, American Chem. Society 1986.Google Scholar
  46. [46]
    Feher G., Hoff A.J., Isaacson R.A., Ackerson L.: Ann. N.Y. Acad. Sci.244, 239–259 (1975)CrossRefADSGoogle Scholar
  47. [47]
    Kevan L., Kispert L.D.: Electron Spin Double Resonance Spectroscopy. New York: John Wiley & Sons 1976.Google Scholar
  48. [48]
    Anderson P.W.: J. Phys. Soc. Japan9, 316–339 (1954)CrossRefADSGoogle Scholar
  49. [49]
    Abragam A.: The Principles of Nuclear Magnetism (Mott N.F., Bullard E.C., Wilkinson D.H., eds.), chap.9.2., The International Series of Monographs on Physics. Oxford: Clarendon Press 1961.Google Scholar
  50. [50]
    Dexter D.L.: J. Chem. Phys.21, 836–850 (1953)CrossRefADSGoogle Scholar
  51. [51]
    Rösch N.: Diss., Univ. Stuttgart 1989.Google Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • V. Hamacher
    • 1
  • J. Wrachtrap
    • 1
  • B. von Maltzan
    • 2
  • M. Plato
    • 1
  • K. Möbius
    • 1
  1. 1.Institut für MolekülphysikFreie Universität BerlinBerlin 33Germany
  2. 2.Gutshof Moltzow-RambowMoltzowGermany

Personalised recommendations