Skip to main content
Log in

Spin dosimetry in catalysis research

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Various aspects of the problem of reliability of the standards for spin dosimetry in solid samples containing transition metal ions are discussed. A method of preparing standards for d1 and d9 ions, based on vanadyl- and copper sulfate, is described. Reference samples with various spin concentration were prepared by uniform distribution of the paramagnetic substance in a diamagnetic, chemically unreactive matrix. The testing of the quality of standards was performed by statistical methods considering the following factors: reproducibility of the average chemical composition between preparations, macro- and microhomogeneity within preparations and precision of EPR measurements. The statistical analysis proved good quality of the standards produced by the elaborated method except for microinhomogeneity. Several examples are given to illustrate application of spin dosimetry in catalysis research. E.g., two different centers of reduced vanadium in vanadia-molybdena catalysts, V(IV) stabilized by oxygen vacancies and V(IV) stabilized by Mo(VI) ions, respectively, were identified. The kinetic model of redox processes occurring in V2O5−MoO3 catalysts upon interaction with oxygen and propylene was proposed. Quantitative determination of isolated Co(II) ions in CoO−MgO solid solutions revealed a strong correlation between the number of these ions and the amount of adsorbed O 2 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alger R.S.: Electron Paramagnetic Resonance, p.201. Interscience Publishers 1968.

  2. Lagan M.J.: Roczniki Chemii47, 199 (1973)

    Google Scholar 

  3. Goldberg J.B.: J. Magn. Reson.32, 233 (1978)

    Google Scholar 

  4. Tantragul N., Breen D.: J. Magn. Reson.42, 38 (1981)

    Google Scholar 

  5. Korteweg G.A., van Reijen L.L.: J. Magn. Reson.42, 429 (1981)

    Google Scholar 

  6. Zimmerman R.: J. Magn. Reson.49, 425 (1982)

    Google Scholar 

  7. Zeldes H., Livingston R.: J. Magn. Reson.49, 84 (1982)

    Google Scholar 

  8. Carlien M., Sochet L.R.: J. C. S. Faraday Trans. I.79, 815 (1983)

    Article  Google Scholar 

  9. Chang T.-T.: Magn. Res. Rev.9, 65 (1984)

    Google Scholar 

  10. Peacock J.M., Sharp M.J., Parker A.J., Ashmore P.G., Hockey J.A.: J. Catal.15, 379 (1969)

    Article  Google Scholar 

  11. Bielanski A., Dyrek K., Serwicka E.: J. Catal.66, 316 (1980)

    Article  Google Scholar 

  12. Dyrek K., Labanowska M.: J. Catal.81, 46 (1983)

    Article  Google Scholar 

  13. Dyrek K., Labanowska M.: J. Catal.96, 32 (1985)

    Article  Google Scholar 

  14. Dyrek K., Sojka Z.: J. C. S. Faraday Trans. I.78, 3177 (1982)

    Article  Google Scholar 

  15. Dyrek K., Madej A., Mazur E., Rokosz A., Rusiecka M.: Wiss. Z. FSU Jena Nat-Wiss R37, 781 (1988)

    Google Scholar 

  16. Dyrek K., Madej A., Mazur E., Rokosz A.: Colloids Surfaces45, 135 (1990)

    Article  Google Scholar 

  17. Madej A., Dyrek K., Mattusch J.: Fresenius J. Anal. Chem.341, 707 (1991)

    Article  Google Scholar 

  18. Dyrek K., Madej A., Rokosz A.: to be published.

  19. Bennett C.A., Franklin N.L.: Statistical Analysis in Chemistry and the Chemical Industry. New York: Wiley 1954.

    Google Scholar 

  20. Bonneviot L., Che M., Dyrek K., Schoellner R., Wendt G.: J. Phys. Chem.90, 2379 (1986)

    Article  Google Scholar 

  21. Dyrek K.: Bull. Acad. Pol. Sci., Ser. Sci. Chim.21, 675 (1973)

    Google Scholar 

  22. Dyrek K., Shvets V.A.: Bull. Acad. Pol. Sci., Ser. Sci. Chim.22, 315 (1974)

    Google Scholar 

  23. Low W.: Phys. Rev.109, 256 (1957)

    Article  ADS  Google Scholar 

  24. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Metal Ions, p.399. Oxford: Clarendon Press 1970.

    Google Scholar 

  25. Mironova N.A., Ulmanis U.A.: Izv. Akad. Nauk Latv. SSR, Ser. Fiz. Tekh. Nauk4, 39 (1973)

    Google Scholar 

  26. Pryce M.H.L.: Proc. R. Soc. London283, 433 (1965)

    Article  ADS  Google Scholar 

  27. Hall T.P.P., Hayes W.: J. Chem. Phys.32, 1871 (1960)

    Article  ADS  Google Scholar 

  28. Mikhejkin I.D., Zhidomirov G.M., Kazansky V.B.: Usp. Khim.41, 909 (1972)

    Google Scholar 

  29. Dyrek K.: Bull. Acad. Polon. Sci., Ser. Sci. Chim.22, 213 (1974)

    Google Scholar 

  30. Che M., Tench A.J.: Adv. Catal.31, 77 (1982)

    Article  Google Scholar 

  31. Bonneviot L., Olivier D., Che M.: J. Mol. Catal.21, 415 (1983)

    Google Scholar 

  32. Bonneviot L.: Thesis, Paris 1983.

  33. Bonneviot L., Olivier D., Che M.: J. Chem. Soc. Chem. Commun.1982, 952.

  34. Kazansky V.B., Elev I.V., Shelimov B.N.: J. Mol. Catal.21, 265 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyrek, K., Rokosz, A. & Madej, A. Spin dosimetry in catalysis research. Appl. Magn. Reson. 6, 309–332 (1994). https://doi.org/10.1007/BF03162496

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162496

Keywords

Navigation