Advertisement

Applied Magnetic Resonance

, Volume 6, Issue 1–2, pp 309–332 | Cite as

Spin dosimetry in catalysis research

  • K. Dyrek
  • A. Rokosz
  • A. Madej
Article

Abstract

Various aspects of the problem of reliability of the standards for spin dosimetry in solid samples containing transition metal ions are discussed. A method of preparing standards for d1 and d9 ions, based on vanadyl- and copper sulfate, is described. Reference samples with various spin concentration were prepared by uniform distribution of the paramagnetic substance in a diamagnetic, chemically unreactive matrix. The testing of the quality of standards was performed by statistical methods considering the following factors: reproducibility of the average chemical composition between preparations, macro- and microhomogeneity within preparations and precision of EPR measurements. The statistical analysis proved good quality of the standards produced by the elaborated method except for microinhomogeneity. Several examples are given to illustrate application of spin dosimetry in catalysis research. E.g., two different centers of reduced vanadium in vanadia-molybdena catalysts, V(IV) stabilized by oxygen vacancies and V(IV) stabilized by Mo(VI) ions, respectively, were identified. The kinetic model of redox processes occurring in V2O5−MoO3 catalysts upon interaction with oxygen and propylene was proposed. Quantitative determination of isolated Co(II) ions in CoO−MgO solid solutions revealed a strong correlation between the number of these ions and the amount of adsorbed O 2 species.

Keywords

Paramagnetic Center Copper Sulfate Vanadia Catalyst Spin Concentration VOSO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alger R.S.: Electron Paramagnetic Resonance, p.201. Interscience Publishers 1968.Google Scholar
  2. [2]
    Lagan M.J.: Roczniki Chemii47, 199 (1973)Google Scholar
  3. [3]
    Goldberg J.B.: J. Magn. Reson.32, 233 (1978)Google Scholar
  4. [4]
    Tantragul N., Breen D.: J. Magn. Reson.42, 38 (1981)Google Scholar
  5. [5]
    Korteweg G.A., van Reijen L.L.: J. Magn. Reson.42, 429 (1981)Google Scholar
  6. [6]
    Zimmerman R.: J. Magn. Reson.49, 425 (1982)Google Scholar
  7. [7]
    Zeldes H., Livingston R.: J. Magn. Reson.49, 84 (1982)Google Scholar
  8. [8]
    Carlien M., Sochet L.R.: J. C. S. Faraday Trans. I.79, 815 (1983)CrossRefGoogle Scholar
  9. [9]
    Chang T.-T.: Magn. Res. Rev.9, 65 (1984)Google Scholar
  10. [10]
    Peacock J.M., Sharp M.J., Parker A.J., Ashmore P.G., Hockey J.A.: J. Catal.15, 379 (1969)CrossRefGoogle Scholar
  11. [11]
    Bielanski A., Dyrek K., Serwicka E.: J. Catal.66, 316 (1980)CrossRefGoogle Scholar
  12. [12]
    Dyrek K., Labanowska M.: J. Catal.81, 46 (1983)CrossRefGoogle Scholar
  13. [13]
    Dyrek K., Labanowska M.: J. Catal.96, 32 (1985)CrossRefGoogle Scholar
  14. [14]
    Dyrek K., Sojka Z.: J. C. S. Faraday Trans. I.78, 3177 (1982)CrossRefGoogle Scholar
  15. [15]
    Dyrek K., Madej A., Mazur E., Rokosz A., Rusiecka M.: Wiss. Z. FSU Jena Nat-Wiss R37, 781 (1988)Google Scholar
  16. [16]
    Dyrek K., Madej A., Mazur E., Rokosz A.: Colloids Surfaces45, 135 (1990)CrossRefGoogle Scholar
  17. [17]
    Madej A., Dyrek K., Mattusch J.: Fresenius J. Anal. Chem.341, 707 (1991)CrossRefGoogle Scholar
  18. [18]
    Dyrek K., Madej A., Rokosz A.: to be published.Google Scholar
  19. [19]
    Bennett C.A., Franklin N.L.: Statistical Analysis in Chemistry and the Chemical Industry. New York: Wiley 1954.Google Scholar
  20. [20]
    Bonneviot L., Che M., Dyrek K., Schoellner R., Wendt G.: J. Phys. Chem.90, 2379 (1986)CrossRefGoogle Scholar
  21. [21]
    Dyrek K.: Bull. Acad. Pol. Sci., Ser. Sci. Chim.21, 675 (1973)Google Scholar
  22. [22]
    Dyrek K., Shvets V.A.: Bull. Acad. Pol. Sci., Ser. Sci. Chim.22, 315 (1974)Google Scholar
  23. [23]
    Low W.: Phys. Rev.109, 256 (1957)CrossRefADSGoogle Scholar
  24. [24]
    Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Metal Ions, p.399. Oxford: Clarendon Press 1970.Google Scholar
  25. [25]
    Mironova N.A., Ulmanis U.A.: Izv. Akad. Nauk Latv. SSR, Ser. Fiz. Tekh. Nauk4, 39 (1973)Google Scholar
  26. [26]
    Pryce M.H.L.: Proc. R. Soc. London283, 433 (1965)CrossRefADSGoogle Scholar
  27. [27]
    Hall T.P.P., Hayes W.: J. Chem. Phys.32, 1871 (1960)CrossRefADSGoogle Scholar
  28. [28]
    Mikhejkin I.D., Zhidomirov G.M., Kazansky V.B.: Usp. Khim.41, 909 (1972)Google Scholar
  29. [29]
    Dyrek K.: Bull. Acad. Polon. Sci., Ser. Sci. Chim.22, 213 (1974)Google Scholar
  30. [30]
    Che M., Tench A.J.: Adv. Catal.31, 77 (1982)CrossRefGoogle Scholar
  31. [31]
    Bonneviot L., Olivier D., Che M.: J. Mol. Catal.21, 415 (1983)Google Scholar
  32. [32]
    Bonneviot L.: Thesis, Paris 1983.Google Scholar
  33. [33]
    Bonneviot L., Olivier D., Che M.: J. Chem. Soc. Chem. Commun.1982, 952.Google Scholar
  34. [34]
    Kazansky V.B., Elev I.V., Shelimov B.N.: J. Mol. Catal.21, 265 (1983)Google Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • K. Dyrek
    • 2
  • A. Rokosz
    • 1
  • A. Madej
    • 1
  1. 1.Department of Analytical ChemistryJagiellonian UniversityCracowPoland
  2. 2.Department of Inorganic ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations