Applied Magnetic Resonance

, Volume 4, Issue 4, pp 425–440 | Cite as

Geometrical restrictions of water diffusion in aqueous protein systems. A study using NMR field-gradient techniques

  • R. Kimmich
  • F. Klammler
  • V. D. Skirda
  • I. A. Serebrennikova
  • A. I. Maklakov
  • N. Fatkullin


Geometrical restrictions of water diffusion in different aqueous protein systems were studied using two versions of the NMR field gradient technique. The samples were aqueous systems of bovine serum albumin, gelatin and horse myoglobin at concentrations ranging from diluted solutions to almost dry powders being only partly hydrated. Hydrated protein aerogels were produced by the aid of a special preparation procedure and studied in addition. The experiments referred to the, temperature and concentration dependences of the water diffusion coefficient above and below the free-water freezing temperature. The diffusion coefficient within clusters of overlapping hydration shells is reduced by one order of magnitude compared with that of bulk water. Geometrical restrictions manifest themselves (a) by the obstruction effect observed at low protein concentrations, (b) by the topologically two-dimensional diffusion in the network of overlapping hydration shells, (c) by the percolation threshold appearing at about 15%b.w. water and (d) by the anomalous diffusion behaviour concluded from the protein aerogel study.


Diffusion Time Water Diffusion Hydration Shell Hydration Water Bovine Serum Albumin Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kuntz I.D.: J. Am. Chem. Soc.93, 514–516 (1971)CrossRefGoogle Scholar
  2. [2]
    Kuntz I.D., Kauzmann W.: Adv. Protein Chem.28, 239–235 (1974)CrossRefGoogle Scholar
  3. [3]
    Kimmich R., Gneiting T., Kotitschke K., Schnur G.: Biophys. J.58, 1183–1197 (1990)CrossRefGoogle Scholar
  4. [4]
    Kotitschke K., Kimmich R., Rommel E., Parak F.: Progr. Coll. Polym. Sci.83, 211–215 (1990)CrossRefGoogle Scholar
  5. [5]
    Wang J.H.: J. Am. Chem. Soc.76, 4755–4763 (1954)CrossRefGoogle Scholar
  6. [6]
    Clark M.E., Burnell E.E., Chapman N.R., Hinke J.A.M.: Biophys. J.39, 289–299 (1982)CrossRefADSGoogle Scholar
  7. [7]
    Family F., Landau D.P. (eds.): Kinetics of Aggregation and Gelation. Amsterdam: Elsevier 1984.Google Scholar
  8. [8]
    Orbach R.: Science231, 814–819 (1986)CrossRefADSGoogle Scholar
  9. [9]
    Kaye B.H.: A Random Walk Through Fractal Dimensions. Weinheim: VCH 1989.MATHGoogle Scholar
  10. [10]
    Careri G., Giansanti A., Rupley J.A.: Proc. Nat. Acad. Sci.83, 6810–6914 (1986)CrossRefADSGoogle Scholar
  11. [11]
    Klafter J., Drake J.M. (eds.): Molecular Dynamics in Restricted Geometries. New York: John Wiley 1989.Google Scholar
  12. [12]
    Stapleton H.J., Allen J.P., Flynn C.P., Stinson D.G., Kurtz S.R.: Phys. Rev. Lett.45, 1456–1459 (1980)CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    Fushman D.: J. Biomol. Struct. Dyn.7, 1333–1344 (1990)Google Scholar
  14. [14]
    Tanner J.E.: J. Chem. Phys.52, 2523–2526 (1970). Erratum: ibid57, 3586 (1972)CrossRefADSGoogle Scholar
  15. [15]
    Maklakov A.I., Skirda V.D. in: Encyclopedia of Fluid Mechanics, vol. 9: Polymer Flow Engineering (Cheremisinov N.P., ed.), p.702. Houston: Gulf Publishing Company 1990.Google Scholar
  16. [16]
    Kimmich R., Unrath W., Schnur G., Rommel E.: J. Magn. Reson.91, 136–140 (1991)Google Scholar
  17. [17]
    Kärger J., Pfeifer H., Vojta G.: Phys. Rev. A37, 4514–4517 (1988)CrossRefADSGoogle Scholar
  18. [18]
    Kärger J., Pfeifer H., Heink W.: Adv. Magn. Reson.12, 1–89 (1988)Google Scholar
  19. [19]
    Andrew E.R., Bryant D.J., Rizvi T.Z.: Chem. Phys. Letters95, 463–466 (1983)CrossRefADSGoogle Scholar
  20. [20]
    Mills R.: J. Phys. Chem.77, 685–688 (1973)CrossRefGoogle Scholar
  21. [21]
    Callaghan P.T.: Aust. J. Phys.37, 359–387 (1984)ADSGoogle Scholar
  22. [22]
    Witten T.A., Sander L.M.: Phys. Rev. Letters47, 1400–1403 (1981)CrossRefADSGoogle Scholar
  23. [23]
    Klammler F.: Thesis. Ulm: University of Ulm 1991.Google Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • R. Kimmich
    • 2
  • F. Klammler
    • 2
  • V. D. Skirda
    • 1
  • I. A. Serebrennikova
    • 1
  • A. I. Maklakov
    • 1
  • N. Fatkullin
    • 1
  1. 1.Department of PhysicsKazan State UniversityKazanRussian Federation
  2. 2.Sektion KernresonanzspektroskopieUniversität UlmUlmFederal Republic of Germany

Personalised recommendations