Applied Magnetic Resonance

, Volume 21, Issue 1, pp 63–70 | Cite as

Superoxide production as a stress response of wounded root cells: ESR spin-trap and acceptor methods

  • N. N. Vylegzhanina
  • L. K. Gordon
  • F. V. Minibayeva
  • O. P. Kolesnikov


The Superoxide generation in the plant root cells in response to wound stress has been studied by the electron spin resonance (ESR) spin-trap and epinephrine-adrenochrome acceptor methods. Tiron readily oxidized by O 2 ⋅− to a rather stable free radical semiquinone was used as a spin trap. Wound stress was shown to activate the root cells inducing an increase in Superoxide production. The largest amount of Superoxide was registered in the early stage after excision of the roots from the seedlings (over 1–2 h). Further incubation of the roots for 5 and 6 h resulted in the lowering of the Superoxide level. Electron donors NADH and NADPH, nonpenetrating via plasma membrane, caused the amplification of Superoxide production in root cells, whereas oxidized nucleotide NAD did not affect the O 2 ⋅− synthesis. Treatment of the roots with a water-soluble analog of naphthoquinone, vitamin K3, led to the total disappearance of the ESR signal from Tiron semiquinone and suppression of epinephrine-adrenochrome conversion. An excessive amount of calcium ions in the root cells induced a powerful increase in the Superoxide release and disturbed the adaptation. The data obtained give us a further indication that the redox system of plasma membrane, comprising a flavoprotein, is likely involved in the production of Superoxide occurring in the response to wound stress in root cells.


Electron Spin Resonance Electron Spin Resonance Spectrum Root Cell Electron Spin Resonance Signal Superoxide Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fridovich I.: Methods Enzymol.105, 59–61 (1984)CrossRefGoogle Scholar
  2. 2.
    Bolwell G.P., Butt V.S., Zimmerlin A.: Free Radic. Res.23, 517–532 (1995)CrossRefGoogle Scholar
  3. 3.
    Bolwell G.P., Davies D.R., Gerrish C., Auh C.-K., Murphy T.M.: Plant Physiol.116, 1379–1385 (1998)CrossRefGoogle Scholar
  4. 4.
    Murphy T.M., Auh C.-K.: Plant Physiol.11, 621–629 (1996)Google Scholar
  5. 5.
    Prasad T.K.: Plant J.10, 1017–1026 (1996)CrossRefGoogle Scholar
  6. 6.
    Moran J.F., Becana M., Iturbeormaetxe I., Frechilla S., Klucas R.V., Apariciotejo P.: Planta194, 346–352 (1994)CrossRefGoogle Scholar
  7. 7.
    Merzlyak M.N., Ivanova D.G., Reshetnikova I.V., Guzhova N.V., Goldshtein N.I.: Biokhimia56, 1798–1805 (1991)Google Scholar
  8. 8.
    Cazale A.C., Rouet-Mayer M.A., Barbier-Brygoo H., Mathieu Y., Lauriere C.: Plant Physiol.16, 659–669 (1998)CrossRefGoogle Scholar
  9. 9.
    Minibayeva F.V., Rakhmatullina D.F., Gordon L.K., Vylegzhanina N.N.: Dokl. Akad. Nauk355, 554–556 (1997)Google Scholar
  10. 10.
    Allan A.C., Fluhr R.: Plant Cell9, 1559–1572 (1997)CrossRefGoogle Scholar
  11. 11.
    Döring O., Lüthje S., Böttger M.: Prog. Bot.56, 328–354 (1998)Google Scholar
  12. 12.
    Segal A.W.: Protoplasma184, 86–103 (1995)CrossRefGoogle Scholar
  13. 13.
    Doke N., Miura J., Sanchez L.M., Park H.J., Noritake T., Yoshioka H., Kawakita K.: Gene179, 45–51 (1996)CrossRefGoogle Scholar
  14. 14.
    Berczi A., Van Gestelen P., Pupillo P. in: Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease (Asard N., Berczi A., Caubergs R.J., eds.), pp. 33–69. Dordrecht: Kluwer 1998.Google Scholar
  15. 15.
    Asard N., Horemans N., Preger V., Trost P. in: Plasma Membrane Systems and Their Role in Biological Stress and Disease (Asard N., Berczi A., Caubergs R.J., eds.), pp. 1–33. Dordrecht: Kluwer 1998.Google Scholar
  16. 16.
    Keller T., Damude H.G., Werner D., Doerner P., Dixon R.A., Lamb C.: Plant Cell10, 1–13 (1998)CrossRefGoogle Scholar
  17. 17.
    Knight M.R., Campbell A.K., Smith S.M., Trewavas A.J.: Nature352, 524–526 (1991)CrossRefADSGoogle Scholar
  18. 18.
    Miller R.W., Rapp U.: J. Biol. Chem.248, 6084–6090 (1973)Google Scholar
  19. 19.
    McRae D.G., Baker J.E., Thompson J.E.: Plant Cell Physiol.23, 375–383 (1982)Google Scholar
  20. 20.
    Misra H.R., Fridovich I.: J. Biol. Chem.247, 188–192 (1972)Google Scholar
  21. 21.
    Barber M.J., Kay C.J.: Arch. Biochem. Biophys.326, 227–232 (1996)CrossRefGoogle Scholar
  22. 22.
    Gordon L.K.: Fiziol. Biokhim. Kult. Rast.24, 128–133 (1992)Google Scholar
  23. 23.
    Minibayeva F.V., Kolesnikov O.P., Gordon L.K.: Protoplasma205, 101–106 (1998)CrossRefGoogle Scholar
  24. 24.
    Pugin A., Franchisse J.-M., Tavernier E., Bligny R., Gout E., Douce R., Guern J.: Plant Cell9, 2077–2091 (1997)CrossRefGoogle Scholar
  25. 25.
    Baker C.J., Orlandi E.W.: Annu. Rev. Phytopathol.33, 299–321 (1995)CrossRefGoogle Scholar
  26. 26.
    Bolwell G.P., Wojtaszek P.: Physiol. Mol. Plant Pathol.51, 347–366 (1997)CrossRefGoogle Scholar
  27. 27.
    Villalba J.M., Crane F.L., Navas P. in: Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease (Asard N., Berczi A., Caubergs R.J., eds.), pp. 247–266. Dordrecht: Kluwer 1998.Google Scholar
  28. 28.
    Döring O., Lüthje S.: Mol. Membr. Biol.13, 127–142 (1996)CrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • N. N. Vylegzhanina
    • 1
  • L. K. Gordon
    • 2
  • F. V. Minibayeva
    • 2
  • O. P. Kolesnikov
    • 2
  1. 1.Laboratory of Molecular BiophysicsRussian Federation
  2. 2.Laboratory of Regulation of Cell OxidationKazan Institute of Biochemistry and Biophysics, Russian Academy of SciencesKazanRussian Federation

Personalised recommendations