Applied Magnetic Resonance

, Volume 21, Issue 3–4, pp 507–516 | Cite as

Pulsed EPR and ENDOR investigation of hydrogen atoms in silsesquioxane cages

  • N. Weiden
  • M. Päch
  • K. P. Dinse


High sensitivity and spectral resolution provided by pulsed electron paramagnetic resonance and electron nuclear double resonance techniques at high Larmor frequencies open the way for a study of atoms in chemical traps. As an example we studied deuteron atoms encased in silsesquioxane cages to probe the cage symmetry as function of temperature. An analysis of the temperature dependence showed that the system undergoes a structural phase transition near 100 K. At this temperature the character of distortion of the ideal cubic symmetry changes from oblate to prolate (or vice versa). With quantum chemical methods, a model for cage escape of the encased atom could be derived. The calculated escape barrier of 0.9 eV is close to the experimental value derived by thermal release experiments. Although the encased deuterium atom exhibits an isotropic hyperfine coupling constant nearly identical with the free atom value, a spin population analysis revealed that approximately 10% of the spin density is transferred to the cage. We therefore conclude that confinement of the hydrogen atom leads to a compression of its wave function compensating the decrease of spin density. In this respect the system falls somewhat short of the properties of an ideal cage, being defined by well decoupled atomic and molecular wave functions.


Electron Paramagnetic Resonance ENDOR Spectrum ENDOR Line Pulse Electron Paramagnetic Resonance Dinse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sasamori R., Okaue Y., Isobe T., Matsuda Y.: Science265, 1691 (1994)CrossRefADSGoogle Scholar
  2. 2.
    Päch M., Stösser R.: J. Phys. Chem. A101, 8360 (1997)CrossRefGoogle Scholar
  3. 3.
    Weiden N., Goedde B., Käß H., Dinse K.-P., Rohrer M.: Phys. Rev. Lett.85, 1544 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Anderson L.W., Pipkin F.M., Baird J.C. Jr.: Phys. Rev. Lett.4, 69 (1960)CrossRefADSGoogle Scholar
  5. 5.
    Törnroos K.W.: Acta Crystallogr. C50 1646 (1994)CrossRefGoogle Scholar
  6. 6.
    Dilger H., Roduner E., Scheuermann R., Major J., Schefzik M., Stößer R., Päch M., Fleming D.G.: Physica288-290, 482 (2000)Google Scholar
  7. 7.
    Päch M.: Ph.D. Thesis, Technical University Berlin, Berlin, Germany 1997.Google Scholar
  8. 8.
    Bieniok A.M., Bürgi H.-B.: J. Phys. Chem.98, 10735 (1994)CrossRefGoogle Scholar
  9. 9.
    Almeida Murphy T., Pawlik T., Weidinger A., Höhne M., Alcala R., Spaeth J.-M.: Phys. Rev. Lett.77, 1075 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • N. Weiden
    • 1
  • M. Päch
    • 2
  • K. P. Dinse
    • 1
  1. 1.Physical Chemistry IIITechnical University DarmstadtDarmstadtGermany
  2. 2.Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations