Advertisement

Applied Magnetic Resonance

, Volume 18, Issue 4, pp 575–582 | Cite as

Surface-coil-type resonators for in vivo temporal ESR measurements in different organs of nitroxide-treated rats

  • M. Tada
  • H. Yokoyama
  • Y. Toyoda
  • H. Ohya
  • T. Ito
  • T. Ogata
Article

Abstract

Three kinds of surface-coil-type resonators (SCRs) operating at 720 MHz were fabricated for in vivo temporal electron spin resonance (ESR) measurements. The inner diameter of the singleturn coil of the SCRs was 3, 4, or 10 mm. ResonatorQ increases and the detection limit decreases with coil diameter. The distance across which the microwave magnetic field can penetrate in the direction facing to the coil was about the same (about 2 mm) for all SCRs. In vivo kinetic studies of intravenously injected 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPOL) were performed at the liver, kidney, stomach, rectum, vein, and skin of rats with SCRs suited to the target areas. The halflife of TEMPOL was estimated from the exponential decay of the ESR signal intensity (the peak-to-peak height). Different sites in the rat showed apparent differences in the half-life of TEMPOL. This suggests that the apparent differences in the reducing ability of TEMPOL are related to the organ or tissue where measurement is taken because no excretion of TEMPOL was observed.

Keywords

Electron Spin Resonance Nitroxide Electron Spin Resonance Signal TEMPOL Electron Spin Resonance Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacic G., Nilges M.J., Magin R.L., Walczak T., Swartz H.M.: Magn. Reson. Med.10, 266–272 (1989)CrossRefGoogle Scholar
  2. 2.
    Ono M., Ito K., Kawamura N., Hsieh K.C., Hirata H., Tsuchihashi N., Kamada H.: J. Magn. Reson. B104, 180–182 (1994)CrossRefGoogle Scholar
  3. 3.
    Hirata H., Iwai H., Ono M.: Rev. Sci. Instrum.66, 4529–4534 (1995)CrossRefADSGoogle Scholar
  4. 4.
    Lin Y., Yokoyama H., Ishida S., Tsuchihashi N., Ogata T.: MAGMA2, 99–104 (1997)CrossRefGoogle Scholar
  5. 5.
    Ishida S., Matsumoto S., Yokoyama H., Mori N., Kumashiro H., Tsuchihashi N., Ogata T., Yamada M., Ono M., Kitajima T., Kamada H., Yoshida E.: Magn. Reson. Imag.10, 21–27 (1992)CrossRefGoogle Scholar
  6. 6.
    Yokoyama H., Ogata T., Tsuchihashi N., Hiramatsu M., Mori N.: Magn. Reson. Imag.14, 559–563 (1996)CrossRefGoogle Scholar
  7. 7.
    Matsmoto S., Mori N., Tsuchihashi N., Ogata T., Lin Y., Yokoyama H., Ishida S.: Magn. Reson. Med.40, 330–333 (1998)CrossRefGoogle Scholar
  8. 8.
    Couet W.R., Eriksson U.G., Tozer T.N., Tuck L.D., Wesbey G.E., Nitecki D., Brasch R.C.: Pharm. Res.1, 203–209 (1984)CrossRefGoogle Scholar
  9. 9.
    Nakagawa K., Ishida S., Yokoyama H., Mori N., Niwa S., Tsuchihashi N.: Free Rad. Res.21, 169–176 (1994)CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • M. Tada
    • 1
  • H. Yokoyama
    • 2
  • Y. Toyoda
    • 3
  • H. Ohya
    • 2
    • 4
  • T. Ito
    • 4
  • T. Ogata
    • 4
  1. 1.Regional Joint-Research Project of Yamagata PrefectureJapan Science and Technology CorporationYamagataJapan
  2. 2.Institute for Life Support TechnologyYamagataJapan
  3. 3.Institute for Fundamental ResearchSuntory LimitedOsakaJapan
  4. 4.Graduate School of Science and EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations