Applied Magnetic Resonance

, Volume 18, Issue 4, pp 527–535 | Cite as

The two-frequency nuclear quadrupole resonance for explosives detection

  • G. V. Mozjoukhine


The two-frequency nuclear quadrupole resonance (NQR) of14N nuclei is described for purposes of explosives detection. Two applications are known: two-frequency NQR for increasing the signal intensity, two-frequency NQR for improved reliability of explosives detection. The two-frequency experiments were carried out in hexahydro-1,3,5-trinitro-s-triazine C3H6N6O6 and sodium nitrite NaNO2 as a substitute for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocycine C4H8N8O8. The two-frequency sequences for NQR are proposed for increasing the amplitude of NQR signal and improvement of detection condition.


Nuclear Quadrupole Resonance Nuclear Quadrupole Resonance Frequency Explosive Detection Nuclear Quadrupole Resonance Spectrum Nuclear Quadrupole Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landers A.G., Brill T.B., Marino R.A.: J. Phys. Chem.85, 2618–2623 (1981); Carpowicz R.J., Brill T.B.: J. Phys. Chem.87, 2109–2112 (1983)CrossRefGoogle Scholar
  2. 2.
    Marino R.A., Connors R.F.: J. Mol. Struct.111, 323–328 (1983)CrossRefADSGoogle Scholar
  3. 3.
    Grechishkin V.S., Sinyavski N.Ya.: Usp. Fiz. Nauk163, 95–119 (1993)Google Scholar
  4. 4.
    Klainer S.M., Hirschfeld T.V., Marino R.A. in: Fourier, Hadamard and Hilbert Transforms in Chemistry (Marshall A.G., ed.), pp. 147–181. New-York: Plenum Press 1982.Google Scholar
  5. 5.
    Kercel S.W., Burlage R.S., Patek D.R., Smith C.M.: SPIE vol. 3079, 467–477 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Fukushima E., Roeder S.B.W., Assink R.A., Gibson A.A.V.: US Patent 4590427 May 20, 1986.Google Scholar
  7. 7.
    Grechishkin VS., Mozjoukhin G.V., Sinyavski N.Ya., Urepina E.V.: Izv. Vuzov, Fizika no. 8, 48–51 (1988)Google Scholar
  8. 8.
    Safin I.A., Osokin D.Ya.: Nuclear Quadrupole Resonance in Nitrogen Compounds, 1st edn., pp. 12, 20, 248. Moscow: Nauka 1977.Google Scholar
  9. 9.
    Buess M.L., Garroway A.N., Miller J.B.: US Patent 5206592, April 27, 1993.Google Scholar
  10. 10.
    Borodin P.M.: Physical Basis of Quantum Electronics, 1st edn, pp. 45, 320. Leningrad: Leningrad University 1985.Google Scholar
  11. 11.
    Grechishkin V.S., Mozjoukhine G.V., Chursin G.N., Sitnikov N.M.: Science-Industry (Russia), Ministry of Defence Industry, no. 3, 16 (1987)Google Scholar
  12. 12.
    Carr H.Y.: Phys. Rev.112, 1693–1701 (1958)CrossRefADSGoogle Scholar
  13. 13.
    Anferov V.P., Mozjoukhine G.V., Fisher R.: Rev. Sci. Instrum.71, 1656–1659 (2000)CrossRefADSGoogle Scholar
  14. 14.
    Rayner T., Magnuson E., West R., Lyndquist R.: SPIE vol. 2936, 31–38 (1997)CrossRefADSGoogle Scholar
  15. 15.
    Mozjoukhine G.V., Grechishkin V.S.: Patent of USSR no. 1303915, class G01 no. 24/00, 15. 12. 1986.Google Scholar
  16. 16.
    Sinyavski N.Ya.: Izv. Vuzov, Fizika no. 7, 54–57 (1992)Google Scholar
  17. 17.
    Grechishkin VS.: Nuclear Quadrupole Interactions in Solids, p. 51. Moscow: Nauka 1973.Google Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • G. V. Mozjoukhine
    • 1
  1. 1.Department of Quantum RadiophysicsKaliningrad State UniversityKaliningradRussian Federation

Personalised recommendations