Applied Magnetic Resonance

, Volume 19, Issue 2, pp 237–243 | Cite as

Change of membrane fluidity and protein conformation involved in [Ca2+]i overload in neuronal cells induced by ONOO

  • X. Yang
  • H. Tu
  • Z. Gao
  • Y. Yi
  • H. Xu


Considerable evidence indicates that the formation of peroxynitrite (ONOO) with superoxide anion (O 2 −⊙ ot) may be involved in the neuronal toxicity of NO. Here, the effects of ONOO on intracellular free calcium concentration ([Ca2+]i) in single MN9D cells was studied by the Fura-2 microfluorometric technique. The results showed that [Ca2+]i was increased dose-dependently with the addition of ONOO (0–40 μmol/l) after 5 s and then decreased rapidly back to the basal level after ONOO was removed. [Ca2+]i response to ONOO can be blocked by removing Ca2+ from the bath or adding L-type calcium channel antagonist nifedipine (10 μmol/l) to the bath. [Ca2+]i transients by ONOO were substantially inhibited by dithiothreitol (DTT), which indicated ONOO may alter the L-type calcium channel on neuronal cell by thiol oxidation. To elucidate the mechanism of ONOO on [Ca2+]i, the electron spin resonance spin-labeling technique was used to study the effects of ONOO on the membrane fluidity and the membrane protein conformation on freshly dissociated neurons. The results indicate that ONOO decreases membrane fluidity both near the surface and deep in the membrane and affects protein conformation. The fact that DTT effectively inhibits the deterioration supports the conclusion that the change of membrane fluidity and protein conformation is involved in [Ca2+]i overload in neuronal cells induced by ONOO.


Nitric Oxide Electron Spin Resonance Electron Spin Resonance Spectrum Membrane Fluidity Nitroxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunot S., Boissiere F., Faucheux B., Brugg B., Prigent A.M., Agid Y., Hirsch E.C.: Neuroscience72, 355 (1996)CrossRefGoogle Scholar
  2. 2.
    Dawson V.L., Dawson T.M., Bartley D.A., Uhl G.R., Snyder S.H.: Neuroscience69, 2651 (1993)Google Scholar
  3. 3.
    Snyder S.H.: Nature364, 577 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Gross S.S., Wolin M.S.: Annu. Rev. Physiol.57, 737 (1995)CrossRefGoogle Scholar
  5. 5.
    Lipton S.A., Choi Y.B., Pan Z.H., Lei S.Z., Chen H.S.V., Sucker N.J., Loscalzo J., Singel D.J., Stamler J.S.: Nature364, 626 (1993)CrossRefADSGoogle Scholar
  6. 6.
    Choi D.W.: J. Neurobiol.23, 1261 (1992)CrossRefGoogle Scholar
  7. 7.
    Dugan L.L., Sensi S.L., Canzoniero L.M.T., Handran S.D., Rothman S.M., Lin T.S., Goldberg M.P., Choi D.W.: J. Neurosci.15, 6377 (1995)Google Scholar
  8. 8.
    Halliwell B.: J. Neurochem.59, 1609 (1992)CrossRefGoogle Scholar
  9. 9.
    Radi R., Beckman J.S., Bush K.M.: Arch. Biochem. Biophys.288, 481 (1991)CrossRefGoogle Scholar
  10. 10.
    Choi H.K., Won L.A., Kontur P.J.: Brain Res.552, 67 (1991)CrossRefGoogle Scholar
  11. 11.
    Xu T., Liu N.J., Qu A.L.: Acta Biophys. Sin.12, 232 (1996)Google Scholar
  12. 12.
    Dildy J.E., Leslie S.W.: Brain Res.499, 383 (1989)CrossRefGoogle Scholar
  13. 13.
    Berliner L.J.: Ann. N.Y. Acad. Sci.414, 153 (1983)CrossRefADSGoogle Scholar
  14. 14.
    Zhao B.L., Zhang Q.G., Zhang J.Z., Xin W.J.: Chin. Sci. Bull.11, 686 (1982)Google Scholar
  15. 15.
    Dawson V.L.: Clin. Exp. Pharmacol. Physiol.22, 305 (1995)CrossRefGoogle Scholar
  16. 16.
    Ikeda Y., Long D.M.: Neurosurgery27, 1 (1990)CrossRefGoogle Scholar
  17. 17.
    Hall E.D., Yonkers P.A., Andrus P.K., Cox J.W., Anderson D.K.: J. Neurotrauma9, S425 (1992)CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • X. Yang
    • 1
  • H. Tu
    • 2
  • Z. Gao
    • 1
  • Y. Yi
    • 1
  • H. Xu
    • 1
  1. 1.Department of ChemistryHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shenzhen Municipal Science and Technology BureauShenzhenChina

Personalised recommendations