Advertisement

Applied Magnetic Resonance

, Volume 19, Issue 1, pp 111–120 | Cite as

ESR evidence for mirror symmetry conservation during radiation damage of X-irradiated single crystals of KClO4

  • B. G. Hegde
  • A. Anand
  • S. V. Bhat
Article

Abstract

Electron spin resonance (ESR) studies of ClO3 and ClO2 radicals in X-irradiated potassium perchlorate, KClO4, single crystals are carried out to investigate the radiation decomposition pathways. The orientation of the maximum principal component of the35Cl hyperfine tensor is determined by ESR and identified with that of the bond ruptured on irradiation. It is found that the weaker Cl-O(2)×2 bonds related by the mirror symmetry survive radiation damage, while the stronger Cl-O(3) and Cl-O(l) bonds get ruptured to form the ClO3 and ClO2 radicals, thus providing evidence for the important role played by the lattice symmetry during radiative decomposition.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Electron Spin Resonance Study Molecular Plane Rotation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson E.R.: The Radiation-Induced Decomposition of Inorganic Molecular Ions, chap. 2, p. 17. New York: Gordon and Breach 1970.Google Scholar
  2. 2.
    Atkins P.W., Symons M.C.R.: The Structure of Inorganic Radicals. Amsterdam: Elsevier 1967.Google Scholar
  3. 3.
    Jones C.H.W. in: Chemical Effects of Nuclear Transformations in Inorganic Molecular Ions (Harbottle G., Maddock A.G., eds.), chap. 15, p. 286. Amsterdam: North-Holland 1979.Google Scholar
  4. 4.
    Bhat S.V., Abdel Gawad M.M.H.: Curr. Sci.61, 397–400 (1991)Google Scholar
  5. 5.
    Hegde B.G., Rastogi A., Damle R., Chandramani R., Bhat S.V.: J. Phys.: Condens. Matter9, 3219–3226 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Usha T., Anand A., Bhat S.V. in: Modern Applications of EPR/ESR from Biophysics to Material Science (Rudowicz C.Z., Yu K.N., Hiraoka H., eds.), pp. 453–458. First Asia-Pacific EPR/ESR Symposium, Hong Kong 1997. Singapore: Springer 1998.Google Scholar
  7. 7.
    Schonland D.S.: Proc. Phys. Soc.73, 788–792 (1959)CrossRefGoogle Scholar
  8. 8.
    Gordy W.: Theory and Applications of Electron Spin Resonance. New York: Wiley 1979.Google Scholar
  9. 9.
    Cole T.: Proc. Natl. Acad. Sci. USA46, 506–508 (1960)CrossRefADSGoogle Scholar
  10. 10.
    Atkins P.W., Brivati J.A., Keen N., Symons M.C.R., Trevalion P.A.: J. Chem. Soc.1962, 4785–4793.Google Scholar
  11. 11.
    Morton J.R.: J. Chem. Phys.45, 1800–1802 (1966)CrossRefADSGoogle Scholar
  12. 12.
    Byberg J.R., Jensen S.J.K., Muus L.T.: J. Chem. Phys.46, 131–137 (1967)CrossRefADSGoogle Scholar
  13. 13.
    Byberg J.R.: J. Chem. Phys.47, 861–862 (1967)CrossRefADSGoogle Scholar
  14. 14.
    Eachus R.S., Edwards P.R., Subramanian S., Symons M.C.R.: J. Chem. Soc. A1968, 1704–1711.Google Scholar
  15. 15.
    Byberg J.R., Jensen S.J.K.: J. Chem. Phys.52, 5902–5910 (1970)CrossRefADSGoogle Scholar
  16. 16.
    Cole T.: J. Chem. Phys.35, 1169–1173 (1961)CrossRefADSGoogle Scholar
  17. 17.
    Walsh A.D.: J. Chem. Soc.1953, 2266–2306.Google Scholar
  18. 18.
    Morton J.R., Preston K.F.: J. Magn. Reson.30, 577–582 (1978)Google Scholar
  19. 19.
    Johansson B.G., Lindquist O.: Acta Crystallogr. B33, 2918–2919 (1977)CrossRefGoogle Scholar
  20. 20.
    Bats J.W., Fuess H.: Acta Crystallogr. B38, 2116–2120 (1982)CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • B. G. Hegde
    • 1
  • A. Anand
    • 2
  • S. V. Bhat
    • 2
  1. 1.Department of PhysicsMahaveer Jain CollegeBangaloreIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations