Applied Magnetic Resonance

, Volume 11, Issue 3–4, pp 375–389 | Cite as

Multiple quantum pulsed ENDOR spectroscopy by time proportional phase increment detection

  • P. Höfer


Multiple quantum ENDOR spectra of the perinaphthenyl radical in solution are reported. All expected multiple quantum spectra up to sixth order could be detected with resolved second order splitting by time proportional phase increment spectroscopy. These spectra are in excellent agreement with the calculation based on the known hyperfine coupling parameters of the sample. Flip angle and off-resonance effects in the detection of multiple quantum spectra have been determined by 2D spectroscopy.


Hyperfine Coupling Multiple Quantum ENDOR Spectrum Electron Spin Echo Envelope Modulation ENDOR Line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bax A.: Two Dimensional Nuclear Magnetic Resonance in Liquids. Delft: Delft University Press 1982.Google Scholar
  2. [2]
    Mehring M.: Principles of High Resolution NMR in Solids. Berlin: Springer 1983Google Scholar
  3. [3]
    Ernst R.R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press 1987.Google Scholar
  4. [4]
    Kevan K., Kispert L.D.: Electron Spin Double Resoinance Spectroscopy. New York: John Wiley & Sons 1976.Google Scholar
  5. [5]
    Dorio M., Freed J.H.: Multiple Electron Resonance Spectroscopy. New York: Plenum Press 1979.Google Scholar
  6. [6]
    Schweiger A.: Struct. Bonding51, 1 (1982)CrossRefGoogle Scholar
  7. [7]
    Kurreck H., Kirste B., Lubitz W.: Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution. VCH Publishers Inc. 1988.Google Scholar
  8. [8]
    Kevan L., Bowman M.K. (eds): Modern Pulsed and Continuous-Wave Electron Spin Resonance. New York: John Wiley & Sons 1990.Google Scholar
  9. [9]
    Dikanov S.A., Tsvetkov Y.D.: Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Boca Raton: CRC Press 1992.Google Scholar
  10. [10]
    Mims W.B.: Proc. Roc. Soc.283, 452 (1965)CrossRefADSGoogle Scholar
  11. [11]
    Davies E.R.: Phys. Lett.47A, 1 (1974)ADSGoogle Scholar
  12. [12]
    Gemperle C., Schweiger A.: Chem. Rev.91, 1481 (1991)CrossRefGoogle Scholar
  13. [13]
    Grupp A., Mehring M. in: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M.K., eds.). New York: John Wiley & Sons 1990.Google Scholar
  14. [14]
    Höfer P., Grupp A., Mehring M.: Phys. Rev.33A, 3519 (1986)ADSGoogle Scholar
  15. [15]
    Cho H.: J. Chem. Phys.94, 2482 (1991)CrossRefADSGoogle Scholar
  16. [16]
    Jeschke G., Schweiger A.: J. Chem. Phys.103, 8329 (1995)CrossRefADSGoogle Scholar
  17. [17]
    Höfer P., Holczer K., Maresch G.G., Schmalbein D.: Bruker Rep. (in press)Google Scholar
  18. [18]
    Rude M., Schweiger A., Günthard Hs.H.: J. Magn. Reson.51, 278 (1983)Google Scholar
  19. [19]
    Mehring M., Höfer P., Kass H., Grupp A.: Euro Phys. Lett.6 463 (1988)CrossRefADSGoogle Scholar
  20. [20]
    Thomann H., Bernardo M.: Isr. J. Chem.32, 323 (1992)Google Scholar
  21. [21]
    Gemperle C., Schweiger A., Ernst R.R.: Chem Phys. Lett.145, 1 (1988)CrossRefADSGoogle Scholar
  22. [22]
    Biehl R., Plato M., Möbius K.: J. Chem. Phys.63, 3515 (1975)CrossRefADSGoogle Scholar
  23. [23]
    Atherton N.M.: Principles of Electron Spin Resonance. London: Ellis Horwood 1993.Google Scholar
  24. [24]
    Wokaun A., Ernst R.R.: Chem. Phys. Lett.52, 407 (1977).CrossRefADSGoogle Scholar
  25. [25]
    Höfer P., Kloza M.: Bruker Rep. 140/94.Google Scholar
  26. [26]
    Keijzers C.P., Reijerse E.J., Schmidt J. (eds.): Pulsed EPR: A New Field of Application. Amsterdam: North Holland 1989.Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • P. Höfer
    • 1
  1. 1.Bruker Analytische MesstechnikRheinstettenGermany

Personalised recommendations